Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2.

Jang CH, Kim MS, Cho YB, Jang YS, Kim GH.

Int J Biol Macromol. 2013 Nov;62:614-22. doi: 10.1016/j.ijbiomac.2013.10.011. Epub 2013 Oct 18.

PMID:
24145300
2.

Effect of umbilical cord serum coated 3D PCL/alginate scaffold for mastoid obliteration.

Jang CH, Cho YB, Choi CH, Jang YS, Jung WK, Lee H, Kim GH.

Int J Pediatr Otorhinolaryngol. 2014 Jul;78(7):1061-5. doi: 10.1016/j.ijporl.2014.04.004. Epub 2014 Apr 12.

PMID:
24788192
3.

Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.

Kim MS, Kim G.

Carbohydr Polym. 2014 Dec 19;114:213-21. doi: 10.1016/j.carbpol.2014.08.008. Epub 2014 Aug 19.

PMID:
25263884
4.

Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.

Kim YB, Lee H, Yang GH, Choi CH, Lee D, Hwang H, Jung WK, Yoon H, Kim GH.

J Colloid Interface Sci. 2016 Jan 1;461:359-68. doi: 10.1016/j.jcis.2015.09.044. Epub 2015 Sep 25.

PMID:
26409783
5.

Mastoid obliteration using three-dimensional composite scaffolds consisting of polycaprolactone/β-tricalcium phosphate/collagen nanofibers: an in vitro and in vivo study.

Jang CH, Cho YB, Yeo MG, Kim GH.

Macromol Biosci. 2013 May;13(5):660-8. doi: 10.1002/mabi.201200393. Epub 2013 Feb 20.

PMID:
23512910
6.

An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

Kundu J, Shim JH, Jang J, Kim SW, Cho DW.

J Tissue Eng Regen Med. 2015 Nov;9(11):1286-97. doi: 10.1002/term.1682. Epub 2013 Jan 24.

PMID:
23349081
7.

Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

Kim M, Jung WK, Kim G.

Bioprocess Biosyst Eng. 2013 Nov;36(11):1725-34. doi: 10.1007/s00449-013-0947-x. Epub 2013 Apr 14.

PMID:
23584739
8.

Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration.

Lee H, Ahn S, Bonassar LJ, Kim G.

Macromol Rapid Commun. 2013 Jan 25;34(2):142-9. doi: 10.1002/marc.201200524. Epub 2012 Oct 12.

PMID:
23059986
9.

Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.

Yu G, Fan Y.

J Biomater Sci Polym Ed. 2008;19(1):87-98. doi: 10.1163/156856208783227703.

PMID:
18177556
10.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

11.

Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds.

He X, Liu Y, Yuan X, Lu L.

PLoS One. 2014 Aug 1;9(8):e104061. doi: 10.1371/journal.pone.0104061. eCollection 2014.

12.

In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds.

Kim BR, Nguyen TB, Min YK, Lee BT.

Tissue Eng Part A. 2014 Dec;20(23-24):3279-89. doi: 10.1089/ten.TEA.2014.0081.

13.

PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities.

Kim YB, Kim GH.

ACS Comb Sci. 2015 Feb 9;17(2):87-99. doi: 10.1021/co500033h. Epub 2015 Jan 12.

PMID:
25541639
14.

Recombinant human BMP-2 enhances osteogenesis of demineralized bone matrix in experimental mastoid obliteration.

Jang YS, Choi CH, Cho YB, Kang MK, Jang CH.

Acta Otolaryngol. 2014 Aug;134(8):785-90. doi: 10.3109/00016489.2014.900702. Epub 2014 May 20.

PMID:
24841764
15.

An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.

Yilgor P, Yilmaz G, Onal MB, Solmaz I, Gundogdu S, Keskil S, Sousa RA, Reis RL, Hasirci N, Hasirci V.

J Tissue Eng Regen Med. 2013 Sep;7(9):687-96. doi: 10.1002/term.1456. Epub 2012 Mar 7.

PMID:
22396311
16.

Poly-ε-caprolactone composite scaffolds for bone repair.

Di Liddo R, Paganin P, Lora S, Dalzoppo D, Giraudo C, Miotto D, Tasso A, Barbon S, Artico M, Bianchi E, Parnigotto PP, Conconi MT, Grandi C.

Int J Mol Med. 2014 Dec;34(6):1537-46. doi: 10.3892/ijmm.2014.1954. Epub 2014 Oct 1.

PMID:
25319350
17.

Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.

Luo Y, Lode A, Wu C, Chang J, Gelinsky M.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6541-9. doi: 10.1021/am508469h. Epub 2015 Mar 19.

PMID:
25761464
18.
19.

Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.

Lee H, Kim G.

J Colloid Interface Sci. 2014 Sep 15;430:315-25. doi: 10.1016/j.jcis.2014.05.065. Epub 2014 Jun 10.

PMID:
24974244
20.

In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds.

Kim TH, Yun YP, Park YE, Lee SH, Yong W, Kundu J, Jung JW, Shim JH, Cho DW, Kim SE, Song HR.

Biomed Mater. 2014 Apr;9(2):025008. doi: 10.1088/1748-6041/9/2/025008. Epub 2014 Feb 11.

PMID:
24518200

Supplemental Content

Support Center