Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 176

1.

RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD.

Neuron. 2013 Oct 16;80(2):415-28. doi: 10.1016/j.neuron.2013.10.015. Erratum in: Neuron. 2013 Nov 20;80(4):1102. Heusler, Aaron R [corrected to Haeusler, Aaron R].

2.

RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia.

Zu T, Liu Y, Bañez-Coronel M, Reid T, Pletnikova O, Lewis J, Miller TM, Harms MB, Falchook AE, Subramony SH, Ostrow LW, Rothstein JD, Troncoso JC, Ranum LP.

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E4968-77. doi: 10.1073/pnas.1315438110. Epub 2013 Nov 18.

3.

Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases.

Riboldi G, Zanetta C, Ranieri M, Nizzardo M, Simone C, Magri F, Bresolin N, Comi GP, Corti S.

Mol Neurobiol. 2014 Dec;50(3):721-32. doi: 10.1007/s12035-014-8724-7. Epub 2014 May 9. Review.

PMID:
24809691
4.

Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons.

Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, Tapper AR, Sellier C, Charlet-Berguerand N, Karydas A, Seeley WW, Boxer AL, Petrucelli L, Miller BL, Gao FB.

Acta Neuropathol. 2013 Sep;126(3):385-99. doi: 10.1007/s00401-013-1149-y. Epub 2013 Jul 9. Erratum in: Acta Neuropathol. 2014 Jun;127(6):941.

5.

Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.

Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH.

Sci Transl Med. 2013 Oct 23;5(208):208ra149. doi: 10.1126/scitranslmed.3007529.

6.

Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.

Wen X, Westergard T, Pasinelli P, Trotti D.

Neurosci Lett. 2017 Jan 1;636:16-26. doi: 10.1016/j.neulet.2016.09.007. Epub 2016 Sep 13. Review.

7.

Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia.

Stepto A, Gallo JM, Shaw CE, Hirth F.

Acta Neuropathol. 2014 Mar;127(3):377-89. doi: 10.1007/s00401-013-1235-1. Epub 2013 Dec 24. Review.

PMID:
24366528
8.

C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia.

Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mäger I, Ezzat K, Turner MR, Ito N, Gasco S, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJA.

Brain. 2017 Apr 1;140(4):887-897. doi: 10.1093/brain/awx024.

PMID:
28334866
9.

Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chun S, Sun S, Ling SC, Myers B, Engelhardt J, Katz M, Baughn M, Platoshyn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muynck L, Daughrity LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utzschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucelli L, Shaw CE, Bennett CF, Da Cruz S, Ravits J, Rigo F, Cleveland DW, Lagier-Tourenne C.

Neuron. 2016 May 4;90(3):535-50. doi: 10.1016/j.neuron.2016.04.006. Epub 2016 Apr 21.

10.

Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS.

Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE, Caulfield T, Daughrity L, Dunmore JH, Castanedes-Casey M, Chew J, Cosio DM, van Blitterswijk M, Lee WC, Rademakers R, Boylan KB, Dickson DW, Petrucelli L.

Acta Neuropathol. 2013 Dec;126(6):829-44. doi: 10.1007/s00401-013-1192-8. Epub 2013 Oct 16.

11.

C9orf72-associated FTD/ALS: when less is more.

Todd PK, Paulson HL.

Neuron. 2013 Oct 16;80(2):257-8. doi: 10.1016/j.neuron.2013.10.010.

12.

Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration.

Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J.

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4530-9. doi: 10.1073/pnas.1318835110. Epub 2013 Oct 29.

13.

There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS.

Gitler AD, Tsuiji H.

Brain Res. 2016 Sep 15;1647:19-29. doi: 10.1016/j.brainres.2016.04.004. Epub 2016 Apr 6. Review.

14.

c9RAN translation: a potential therapeutic target for the treatment of amyotrophic lateral sclerosis and frontotemporal dementia.

Gendron TF, Cosio DM, Petrucelli L.

Expert Opin Ther Targets. 2013 Sep;17(9):991-5. doi: 10.1517/14728222.2013.818659. Epub 2013 Jul 12.

PMID:
23844663
15.

The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R, Lloyd TE, Rothstein JD.

Nature. 2015 Sep 3;525(7567):56-61. doi: 10.1038/nature14973. Epub 2015 Aug 26.

16.

Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice.

Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE, Metterville J, Weiss A, Wightman N, Salameh J, Kim J, Sun H, Boylan KB, Dickson D, Kennedy Z, Lin Z, Zhang YJ, Daughrity L, Jung C, Gao FB, Sapp PC, Horvitz HR, Bosco DA, Brown SP, de Jong P, Petrucelli L, Mueller C, Brown RH Jr.

Neuron. 2015 Dec 2;88(5):902-909. doi: 10.1016/j.neuron.2015.11.018.

17.

Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.

Todd TW, Petrucelli L.

J Neurochem. 2016 Aug;138 Suppl 1:145-62. doi: 10.1111/jnc.13623. Epub 2016 Jun 15. Review.

18.

Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.

DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R.

Neuron. 2011 Oct 20;72(2):245-56. doi: 10.1016/j.neuron.2011.09.011. Epub 2011 Sep 21.

19.

C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?

Mizielinska S, Isaacs AM.

Curr Opin Neurol. 2014 Oct;27(5):515-23. doi: 10.1097/WCO.0000000000000130. Review.

20.

Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, Petrucelli L, Miller BL, Almeida S, Gao FB.

Neuron. 2016 Oct 19;92(2):383-391. doi: 10.1016/j.neuron.2016.09.015. Epub 2016 Oct 6.

Supplemental Content

Support Center