Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

Lee SA, Pinnick DA, Anderson A.

J Biomol Struct Dyn. 2014 Dec;32(12):2051-7. doi: 10.1080/07391102.2013.845855. Epub 2013 Oct 15.

PMID:
24127792
2.

A study of the eigenvectors of the vibrational modes in crystalline cytidine via high-pressure Raman spectroscopy.

Lee SA, Pinnick DA, Anderson A.

J Biomol Struct Dyn. 2015;33(4):892-6. doi: 10.1080/07391102.2014.915763. Epub 2014 May 8.

PMID:
24738570
3.

A high pressure study of the eigenvectors of the infra-red active vibrational modes of crystalline adenosine.

Starkey CA, Lee SA, Anderson A.

J Biomol Struct Dyn. 2016;34(4):716-23. doi: 10.1080/07391102.2015.1054434. Epub 2015 Jun 15.

PMID:
26009279
4.

Raman and infrared studies of nucleosides at high pressures: I. Adenosine.

Martin KC, Pinnick DA, Lee SA, Anderson A, Smith W, Griffey RH, Mohan V.

J Biomol Struct Dyn. 1999 Jun;16(6):1159-67.

PMID:
10447200
5.

High-pressure effects in pyrene crystals: vibrational spectroscopy.

Sun B, Dreger ZA, Gupta YM.

J Phys Chem A. 2008 Oct 23;112(42):10546-51. doi: 10.1021/jp806382x. Epub 2008 Oct 1.

PMID:
18826198
6.

A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).

Frost RL, Scholz R, López A, Xi Y.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Apr 24;124:243-8. doi: 10.1016/j.saa.2014.01.053. Epub 2014 Jan 21.

PMID:
24491665
7.

Low-frequency Raman scattering study of six nucleosides.

Koontz CA, Lee SA.

J Biomol Struct Dyn. 2014;32(7):1148-54. doi: 10.1080/07391102.2013.802996. Epub 2013 Jun 19.

PMID:
24404768
8.

Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.

Frost RL, López A, Xi Y, Granja A, Scholz R, Lima RM.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Oct;114:309-15. doi: 10.1016/j.saa.2013.05.033. Epub 2013 May 30.

PMID:
23778171
9.

Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance raman spectroscopy.

Xiao Y, Wang H, George SJ, Smith MC, Adams MW, Jenney FE Jr, Sturhahn W, Alp EE, Zhao J, Yoda Y, Dey A, Solomon EI, Cramer SP.

J Am Chem Soc. 2005 Oct 26;127(42):14596-606.

PMID:
16231912
10.

A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.

Frost RL, López A, Xi Y, Cardoso LH, Scholz R.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Apr 24;124:34-9. doi: 10.1016/j.saa.2013.12.039. Epub 2014 Jan 9.

PMID:
24457936
11.

Probing the low-frequency vibrational modes of viruses with Raman scattering--bacteriophage M13 in water.

Tsen KT, Dykeman EC, Sankey OF, Tsen SW, Lin NT, Kiang JG.

J Biomed Opt. 2007 Mar-Apr;12(2):024009.

PMID:
17477724
12.

Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

Larkin PJ, Dabros M, Sarsfield B, Chan E, Carriere JT, Smith BC.

Appl Spectrosc. 2014;68(7):758-76. doi: 10.1366/13-07329.

PMID:
25014842
13.

Dynamics of Rhodobacter capsulatus [2FE-2S] ferredoxin VI and Aquifex aeolicus ferredoxin 5 via nuclear resonance vibrational spectroscopy (NRVS) and resonance Raman spectroscopy.

Xiao Y, Tan ML, Ichiye T, Wang H, Guo Y, Smith MC, Meyer J, Sturhahn W, Alp EE, Zhao J, Yoda Y, Cramer SP.

Biochemistry. 2008 Jun 24;47(25):6612-27. doi: 10.1021/bi701433m.

PMID:
18512953
14.

High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

Dreger ZA, Gupta YM.

J Phys Chem B. 2007 Apr 19;111(15):3893-903. Epub 2007 Mar 23.

PMID:
17388552
15.

The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.

Frost RL, López A, Scholz R, Xi Y, Lana C.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jul 15;128:408-12. doi: 10.1016/j.saa.2014.02.198. Epub 2014 Mar 14.

PMID:
24682056
16.

Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

Tan ML, Bizzarri AR, Xiao Y, Cannistraro S, Ichiye T, Manzoni C, Cerullo G, Adams MW, Jenney FE Jr, Cramer SP.

J Inorg Biochem. 2007 Mar;101(3):375-84. Epub 2006 Oct 20.

PMID:
17204331
17.

A vibrational spectroscopic study of the phosphate mineral cyrilovite Na(Fe3+)3(PO4)2(OH)4·2(H2O) and in comparison with wardite.

Frost RL, Xi Y, Scholz R.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 May;108:244-50. doi: 10.1016/j.saa.2013.02.007. Epub 2013 Feb 17.

PMID:
23501935
18.

Vibrational spectrum, ab initio calculation, conformational equilibria and torsional modes of 1,3-dibromopropane.

Nalewanski MS, Tambouret YP, Lentini ST, Stidham HD, Guirgis GA.

Spectrochim Acta A Mol Biomol Spectrosc. 2005 May;61(7):1547-57.

PMID:
15820889
19.

Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA.

Karunakaran V, Benabbas A, Youn H, Champion PM.

J Am Chem Soc. 2011 Nov 23;133(46):18816-27. doi: 10.1021/ja206152m. Epub 2011 Oct 28.

20.

Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering.

Shibata T, Mori T, Kojima S.

Spectrochim Acta A Mol Biomol Spectrosc. 2015;150:207-11. doi: 10.1016/j.saa.2015.05.059. Epub 2015 May 29.

PMID:
26051642

Supplemental Content

Support Center