Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II.

Kollmann K, Pestka JM, Kühn SC, Schöne E, Schweizer M, Karkmann K, Otomo T, Catala-Lehnen P, Failla AV, Marshall RP, Krause M, Santer R, Amling M, Braulke T, Schinke T.

EMBO Mol Med. 2013 Dec;5(12):1871-86. doi: 10.1002/emmm.201302979. Epub 2013 Oct 15.

2.

A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology.

Paton L, Bitoun E, Kenyon J, Priestman DA, Oliver PL, Edwards B, Platt FM, Davies KE.

J Biol Chem. 2014 Sep 26;289(39):26709-21. doi: 10.1074/jbc.M114.586156. Epub 2014 Aug 8.

3.

Ultrastructural analysis of neuronal and non-neuronal lysosomal storage in mucolipidosis type II knock-in mice.

Schweizer M, Markmann S, Braulke T, Kollmann K.

Ultrastruct Pathol. 2013 Oct;37(5):366-72. doi: 10.3109/01913123.2013.810687.

PMID:
24047352
4.

AAV8-mediated expression of N-acetylglucosamine-1-phosphate transferase attenuates bone loss in a mouse model of mucolipidosis II.

Ko AR, Jin DK, Cho SY, Park SW, Przybylska M, Yew NS, Cheng SH, Kim JS, Kwak MJ, Kim SJ, Sohn YB.

Mol Genet Metab. 2016 Apr;117(4):447-55. doi: 10.1016/j.ymgme.2016.02.001. Epub 2016 Feb 3.

PMID:
26857995
5.

Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development.

Koehne T, Markmann S, Schweizer M, Muschol N, Friedrich RE, Hagel C, Glatzel M, Kahl-Nieke B, Amling M, Schinke T, Braulke T.

Biochim Biophys Acta. 2016 Sep;1862(9):1570-80. doi: 10.1016/j.bbadis.2016.05.018. Epub 2016 May 27.

PMID:
27239697
7.

Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting.

Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R.

J Bone Miner Res. 2016 Mar;31(3):535-48. doi: 10.1002/jbmr.2722. Epub 2015 Oct 13.

8.

Comparative pathology of murine mucolipidosis types II and IIIC.

Vogel P, Payne BJ, Read R, Lee WS, Gelfman CM, Kornfeld S.

Vet Pathol. 2009 Mar;46(2):313-24. doi: 10.1354/vp.46-2-313.

9.

Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.

Kim SD, Kim HN, Lee JH, Jin WJ, Hwang SJ, Kim HH, Ha H, Lee ZH.

Biochem Pharmacol. 2013 Sep 15;86(6):782-90. doi: 10.1016/j.bcp.2013.07.015. Epub 2013 Aug 6.

PMID:
23928189
10.

Neurologic abnormalities in mouse models of the lysosomal storage disorders mucolipidosis II and mucolipidosis III γ.

Idol RA, Wozniak DF, Fujiwara H, Yuede CM, Ory DS, Kornfeld S, Vogel P.

PLoS One. 2014 Oct 14;9(10):e109768. doi: 10.1371/journal.pone.0109768. eCollection 2014. Erratum in: PLoS One. 2014;9(11):e114199.

11.

Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice.

Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T.

Brain. 2012 Sep;135(Pt 9):2661-75. doi: 10.1093/brain/aws209.

12.

Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.

Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP.

J Bone Miner Res. 2005 Sep;20(9):1659-68. Epub 2005 May 2.

13.

Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.

Zhai ZJ, Li HW, Liu GW, Qu XH, Tian B, Yan W, Lin Z, Tang TT, Qin A, Dai KR.

Br J Pharmacol. 2014 Feb;171(3):663-75. doi: 10.1111/bph.12463.

14.

Prenatal skeletal dysplasia phenotype in severe MLII alpha/beta with novel GNPTAB mutation.

Aggarwal S, Coutinho MF, Dalal AB, Mohamed Nurul Jain SJ, Prata MJ, Alves S.

Gene. 2014 Jun 1;542(2):266-8. doi: 10.1016/j.gene.2014.03.053. Epub 2014 Mar 28.

PMID:
24685522
15.

Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.

Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G.

J Clin Invest. 2006 Dec;116(12):3150-9. Epub 2006 Nov 9.

16.

RARγ is a negative regulator of osteoclastogenesis.

Green AC, Poulton IJ, Vrahnas C, Häusler KD, Walkley CR, Wu JY, Martin TJ, Gillespie MT, Chandraratna RA, Quinn JM, Sims NA, Purton LE.

J Steroid Biochem Mol Biol. 2015 Jun;150:46-53. doi: 10.1016/j.jsbmb.2015.03.005. Epub 2015 Mar 20.

PMID:
25800721
17.

Osteoblastic γ-aminobutyric acid, type B receptors negatively regulate osteoblastogenesis toward disturbance of osteoclastogenesis mediated by receptor activator of nuclear factor κB ligand in mouse bone.

Takahata Y, Takarada T, Hinoi E, Nakamura Y, Fujita H, Yoneda Y.

J Biol Chem. 2011 Sep 23;286(38):32906-17. doi: 10.1074/jbc.M111.253526. Epub 2011 Aug 2.

18.

Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.

Tonna S, Poulton IJ, Taykar F, Ho PW, Tonkin B, Crimeen-Irwin B, Tatarczuch L, McGregor NE, Mackie EJ, Martin TJ, Sims NA.

Development. 2016 Feb 15;143(4):648-57. doi: 10.1242/dev.125625. Epub 2016 Jan 11. Erratum in: Development. 2017 Feb 1;144(3):530.

19.

Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells.

Schulze J, Bickert T, Beil FT, Zaiss MM, Albers J, Wintges K, Streichert T, Klaetschke K, Keller J, Hissnauer TN, Spiro AS, Gessner A, Schett G, Amling M, McKenzie AN, Horst AK, Schinke T.

J Bone Miner Res. 2011 Apr;26(4):704-17. doi: 10.1002/jbmr.269.

20.

The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice.

Vinik Y, Shatz-Azoulay H, Vivanti A, Hever N, Levy Y, Karmona R, Brumfeld V, Baraghithy S, Attar-Lamdar M, Boura-Halfon S, Bab I, Zick Y.

Elife. 2015 May 8;4:e05914. doi: 10.7554/eLife.05914.

Supplemental Content

Support Center