Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems.

McKinnon DD, Domaille DW, Cha JN, Anseth KS.

Adv Mater. 2014 Feb 12;26(6):865-72. doi: 10.1002/adma.201303680. Epub 2013 Oct 11.

2.

Fabricating gradient hydrogel scaffolds for 3D cell culture.

Chatterjee K, Young MF, Simon CG Jr.

Comb Chem High Throughput Screen. 2011 May;14(4):227-36. doi: 1386-2073/11 $58.00+.00.

3.

Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels.

McKinnon DD, Domaille DW, Brown TE, Kyburz KA, Kiyotake E, Cha JN, Anseth KS.

Soft Matter. 2014 Dec 14;10(46):9230-6. doi: 10.1039/c4sm01365d.

4.

Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.

Roberts JJ, Earnshaw A, Ferguson VL, Bryant SJ.

J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):158-69. doi: 10.1002/jbm.b.31883. Epub 2011 Jun 28.

PMID:
21714081
5.

Adaptable hydrogel networks with reversible linkages for tissue engineering.

Wang H, Heilshorn SC.

Adv Mater. 2015 Jul 1;27(25):3717-36. doi: 10.1002/adma.201501558. Epub 2015 May 19. Review.

6.

Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization.

Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K.

Biomaterials. 2009 Oct;30(29):5270-8. doi: 10.1016/j.biomaterials.2009.06.011. Epub 2009 Jul 9.

7.

Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel.

Cha C, Kim SY, Cao L, Kong H.

Biomaterials. 2010 Jun;31(18):4864-71. doi: 10.1016/j.biomaterials.2010.02.059. Epub 2010 Mar 26.

PMID:
20347136
8.

Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.

Aroguz AZ, Baysal K, Adiguzel Z, Baysal BM.

Appl Biochem Biotechnol. 2014 May;173(2):433-48. doi: 10.1007/s12010-014-0851-0. Epub 2014 Apr 12.

PMID:
24728760
9.

Multilayer microfluidic PEGDA hydrogels.

Cuchiara MP, Allen AC, Chen TM, Miller JS, West JL.

Biomaterials. 2010 Jul;31(21):5491-7. doi: 10.1016/j.biomaterials.2010.03.031. Epub 2010 May 5.

PMID:
20447685
10.

End-group effects on the properties of PEG-co-PGA hydrogels.

Bencherif SA, Srinivasan A, Sheehan JA, Walker LM, Gayathri C, Gil R, Hollinger JO, Matyjaszewski K, Washburn NR.

Acta Biomater. 2009 Jul;5(6):1872-83. doi: 10.1016/j.actbio.2009.02.030. Epub 2009 Feb 28.

11.

Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization.

Turturro MV, Papavasiliou G.

J Biomater Sci Polym Ed. 2012;23(7):917-39. doi: 10.1163/092050611X566450.

PMID:
21477459
12.

MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation.

Turturro MV, Christenson MC, Larson JC, Young DA, Brey EM, Papavasiliou G.

PLoS One. 2013;8(3):e58897. doi: 10.1371/journal.pone.0058897. Epub 2013 Mar 12.

13.

Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels.

Rosales AM, Mabry KM, Nehls EM, Anseth KS.

Biomacromolecules. 2015 Mar 9;16(3):798-806. doi: 10.1021/bm501710e. Epub 2015 Feb 10.

14.

Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response.

Zustiak SP, Pubill S, Ribeiro A, Leach JB.

Biotechnol Prog. 2013 Sep-Oct;29(5):1255-64. doi: 10.1002/btpr.1761. Epub 2013 Jun 22.

15.

An adaptable hydrogel array format for 3-dimensional cell culture and analysis.

Jongpaiboonkit L, King WJ, Lyons GE, Paguirigan AL, Warrick JW, Beebe DJ, Murphy WL.

Biomaterials. 2008 Aug;29(23):3346-56. doi: 10.1016/j.biomaterials.2008.04.040. Epub 2008 May 16.

16.

Mechanomimetic hydrogels for vocal fold lamina propria regeneration.

Kutty JK, Webb K.

J Biomater Sci Polym Ed. 2009;20(5-6):737-56. doi: 10.1163/156856209X426763.

PMID:
19323887
17.

Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J.

Biomacromolecules. 2015 Nov 9;16(11):3508-18. doi: 10.1021/acs.biomac.5b01287. Epub 2015 Oct 8.

PMID:
26414083
18.

3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X.

Adv Mater. 2015 Jul 15;27(27):4035-40. doi: 10.1002/adma.201501099. Epub 2015 Jun 1.

19.

Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour.

Ahadian S, Banan Sadeghian R, Yaginuma S, Ramón-Azcón J, Nashimoto Y, Liang X, Bae H, Nakajima K, Shiku H, Matsue T, Nakayama KS, Khademhosseini A.

Biomater Sci. 2015 Nov;3(11):1449-58. doi: 10.1039/c5bm00215j.

PMID:
26343776
20.

Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds.

Rajaram A, Schreyer DJ, Chen DX.

J Biomater Sci Polym Ed. 2015;26(7):433-45. doi: 10.1080/09205063.2015.1016383. Epub 2015 Mar 2.

PMID:
25661399

Supplemental Content

Support Center