Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers.

Park KM, Lee BS, Youk JH, Lee J, Yu WR.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11115-22. doi: 10.1021/am403348q. Epub 2013 Oct 28.

PMID:
24117056
2.

Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.

Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, Wong CP.

Langmuir. 2005 Nov 22;21(24):11208-12.

PMID:
16285792
3.

The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers.

Prilutsky S, Zussman E, Cohen Y.

Nanotechnology. 2008 Apr 23;19(16):165603. doi: 10.1088/0957-4484/19/16/165603. Epub 2008 Mar 20.

PMID:
21825647
4.

Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles.

Lai C, Guo Q, Wu XF, Reneker DH, Hou H.

Nanotechnology. 2008 May 14;19(19):195303. doi: 10.1088/0957-4484/19/19/195303. Epub 2008 Apr 7.

PMID:
21825712
5.

Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

Jia X, Tang T, Cheng D, Zhang C, Zhang R, Cai Q, Yang X.

Colloids Surf B Biointerfaces. 2015 Dec 1;136:585-93. doi: 10.1016/j.colsurfb.2015.09.062. Epub 2015 Oct 3.

PMID:
26454549
6.

Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior.

Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C, Liu Y.

J Colloid Interface Sci. 2011 Apr 15;356(2):706-12. doi: 10.1016/j.jcis.2011.01.032. Epub 2011 Jan 14.

PMID:
21300365
7.

Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation.

Jo H, Hwang KW, Kim D, Kiyofumi M, Park HS, Kim MH, Ahn HS.

Sci Rep. 2015 Apr 23;5:9901. doi: 10.1038/srep09901.

8.

Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone.

Wang P, Zhang D, Ma F, Ou Y, Chen QN, Xie S, Li J.

Nanoscale. 2012 Nov 21;4(22):7199-204. doi: 10.1039/c2nr32249h.

PMID:
23070027
9.

Enhanced field electron emission from electrospun co-loaded activated porous carbon nanofibers.

Aykut Y.

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3405-15. doi: 10.1021/am3003523. Epub 2012 Jul 5.

PMID:
22720751
10.

Preparation and characterization of electrospun core sheath nanofibers from multi-walled carbon nanotubes and poly(vinyl pyrrolidone).

Miao J, Miyauchi M, Dordick JS, Linhardt RJ.

J Nanosci Nanotechnol. 2012 Mar;12(3):2387-93.

PMID:
22755063
11.

Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer.

Shin J, Ryu WH, Park KS, Kim ID.

ACS Nano. 2013 Aug 27;7(8):7330-41. doi: 10.1021/nn403003b. Epub 2013 Jul 22.

PMID:
23875909
12.

Effects of Hierarchical Surface Roughness on Droplet Contact Angle.

Bell MS, Shahraz A, Fichthorn KA, Borhan A.

Langmuir. 2015 Jun 23;31(24):6752-62. doi: 10.1021/acs.langmuir.5b01051. Epub 2015 Jun 11.

PMID:
26030089
13.

Revealing the role of catalysts in carbon nanotubes and nanofibers by scanning transmission X-ray microscopy.

Gao J, Zhong J, Bai L, Liu J, Zhao G, Sun X.

Sci Rep. 2014 Jan 8;4:3606. doi: 10.1038/srep03606.

14.

Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.

Patel A, Mukundan S, Wang W, Karumuri A, Sant V, Mukhopadhyay SM, Sant S.

Acta Biomater. 2016 Mar 1;32:77-88. doi: 10.1016/j.actbio.2016.01.004. Epub 2016 Jan 5.

PMID:
26768231
15.

Factors affecting the growth of carbon nanofibers on titanium substrates and their electrical properties.

Gao Y, Adusumilli SP, Turner J, Lesperance L, Westgate C, Sammakia B.

J Nanosci Nanotechnol. 2012 Oct;12(10):7777-87.

PMID:
23421139
16.

Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.

Khang D, Kim SY, Liu-Snyder P, Palmore GT, Durbin SM, Webster TJ.

Biomaterials. 2007 Nov;28(32):4756-68. Epub 2007 Aug 13.

PMID:
17706277
17.

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.

Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del Rio DA, Eichhorn SJ.

ACS Appl Mater Interfaces. 2013 Oct 23;5(20):9983-90. doi: 10.1021/am403622v. Epub 2013 Oct 11.

18.

In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.

Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y.

Nanoscale. 2011 Aug;3(8):3357-63. doi: 10.1039/c1nr10405e. Epub 2011 Jul 15.

PMID:
21761072
19.

Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes.

Papkov D, Beese AM, Goponenko A, Zou Y, Naraghi M, Espinosa HD, Saha B, Schatz GC, Moravsky A, Loutfy R, Nguyen ST, Dzenis Y.

ACS Nano. 2013 Jan 22;7(1):126-42. doi: 10.1021/nn303423x. Epub 2012 Dec 18.

PMID:
23249440
20.

The fabrication and electrochemical properties of electrospun nanofibers of a multiwalled carbon nanotube grafted by chitosan.

Feng W, Wu Z, Li Y, Feng Y, Yuan X.

Nanotechnology. 2008 Mar 12;19(10):105707. doi: 10.1088/0957-4484/19/10/105707. Epub 2008 Feb 14.

PMID:
21817715
Items per page

Supplemental Content

Write to the Help Desk