Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 519

1.

Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats.

Fu SZ, Meng XH, Fan J, Yang LL, Wen QL, Ye SJ, Lin S, Wang BQ, Chen LL, Wu JB, Chen Y, Fan JM, Li Z.

J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):533-42. doi: 10.1002/jbm.b.33032. Epub 2013 Sep 20.

PMID:
24115465
2.

In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application.

Fu S, Yang L, Fan J, Wen Q, Lin S, Wang B, Chen L, Meng X, Chen Y, Wu J.

Colloids Surf B Biointerfaces. 2013 Jul 1;107:167-73. doi: 10.1016/j.colsurfb.2013.01.068. Epub 2013 Feb 9.

PMID:
23500727
3.

Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells.

Guo G, Fu S, Zhou L, Liang H, Fan M, Luo F, Qian Z, Wei Y.

Nanoscale. 2011 Sep 1;3(9):3825-32. doi: 10.1039/c1nr10484e. Epub 2011 Aug 17.

PMID:
21847493
4.

In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold.

Fu S, Ni P, Wang B, Chu B, Peng J, Zheng L, Zhao X, Luo F, Wei Y, Qian Z.

Biomaterials. 2012 Nov;33(33):8363-71. doi: 10.1016/j.biomaterials.2012.08.023. Epub 2012 Aug 22.

PMID:
22921926
5.

Polymeric matrix for drug delivery: honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel.

Gou M, Gong C, Zhang J, Wang X, Wang X, Gu Y, Guo G, Chen L, Luo F, Zhao X, Wei Y, Qian Z.

J Biomed Mater Res A. 2010 Apr;93(1):219-26. doi: 10.1002/jbm.a.32546.

PMID:
19557789
6.

Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application.

Ranjbar-Mohammadi M, Bahrami SH.

Int J Biol Macromol. 2016 Mar;84:448-56. doi: 10.1016/j.ijbiomac.2015.12.024. Epub 2015 Dec 17.

PMID:
26706845
7.

Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite.

Ni PY, Fan M, Qian ZY, Luo JC, Gong CY, Fu SZ, Shi S, Luo F, Yang ZM.

J Biomed Mater Res A. 2012 Jan;100(1):171-9. doi: 10.1002/jbm.a.33262. Epub 2011 Oct 19.

PMID:
22009709
8.

Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering.

Zhang H, Xia J, Pang X, Zhao M, Wang B, Yang L, Wan H, Wu J, Fu S.

Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:537-543. doi: 10.1016/j.msec.2016.12.116. Epub 2016 Dec 24.

PMID:
28183642
9.

In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application.

Li X, Chen S, Zhang B, Li M, Diao K, Zhang Z, Li J, Xu Y, Wang X, Chen H.

Int J Pharm. 2012 Nov 1;437(1-2):110-9. doi: 10.1016/j.ijpharm.2012.08.001. Epub 2012 Aug 7.

PMID:
22903048
10.

PCL-PEG-PCL film promotes cartilage regeneration in vivo.

Fu N, Liao J, Lin S, Sun K, Tian T, Zhu B, Lin Y.

Cell Prolif. 2016 Dec;49(6):729-739. doi: 10.1111/cpr.12295. Epub 2016 Sep 19.

PMID:
27647680
11.
12.

Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.

Chen H, Huang J, Yu J, Liu S, Gu P.

Int J Biol Macromol. 2011 Jan 1;48(1):13-9. doi: 10.1016/j.ijbiomac.2010.09.019. Epub 2010 Oct 8.

PMID:
20933540
13.

Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer.

Fang F, Gong CY, Dong PW, Fu SZ, Gu YC, Guo G, Zhao X, Wei YQ, Qian ZY.

Biomed Mater. 2009 Apr;4(2):025002. doi: 10.1088/1748-6041/4/2/025002. Epub 2009 Feb 11.

PMID:
19208940
14.

Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering.

Wang Y, Guo G, Chen H, Gao X, Fan R, Zhang D, Zhou L.

Int J Nanomedicine. 2014 Apr 17;9:1991-2003. doi: 10.2147/IJN.S55318. eCollection 2014.

15.

Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.

Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F.

Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1183-91. doi: 10.1016/j.msec.2016.08.032. Epub 2016 Aug 13.

PMID:
27612816
16.

Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery.

Gou M, Zheng X, Men K, Zhang J, Zheng L, Wang X, Luo F, Zhao Y, Zhao X, Wei Y, Qian Z.

J Phys Chem B. 2009 Oct 1;113(39):12928-33. doi: 10.1021/jp905781g.

PMID:
19736995
17.

Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ε-caprolactone) copolymer micelles for the delivery of curcumin.

Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, Feng R.

Drug Deliv. 2015 Jan;22(1):58-68. doi: 10.3109/10717544.2014.901436. Epub 2014 Apr 14.

PMID:
24725028
18.

Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties.

Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS.

Clin Exp Pharmacol Physiol. 2009 Dec;36(12):1149-56. doi: 10.1111/j.1440-1681.2009.05216.x. Epub 2009 May 19.

19.
20.

Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.

Ranjbar-Mohammadi M, Bahrami SH.

Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:71-9. doi: 10.1016/j.msec.2014.10.020. Epub 2014 Oct 13.

PMID:
25579898

Supplemental Content

Support Center