Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Cell-specific modeling of retinal ganglion cell electrical activity.

Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6539-42. doi: 10.1109/EMBC.2013.6611053.

PMID:
24111240
2.

The unique characteristics of ON and OFF retinal ganglion cells: a modeling study.

Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:6096-9. doi: 10.1109/EMBC.2014.6945020.

PMID:
25571388
3.

Influence of active dendrites on firing patterns in a retinal ganglion cell model.

Guo T, Tsai D, Sovilj S, Morley JW, Suaning GJ, Lovell NH, Dokos S.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4557-60. doi: 10.1109/EMBC.2013.6610561.

PMID:
24110748
4.
5.

Electrical activity of ON and OFF retinal ganglion cells: a modelling study.

Guo T, Tsai D, Morley JW, Suaning GJ, Kameneva T, Lovell NH, Dokos S.

J Neural Eng. 2016 Apr;13(2):025005. doi: 10.1088/1741-2560/13/2/025005. Epub 2016 Feb 23.

PMID:
26905646
6.

Classification of potassium and chlorine ionic currents in retinal ganglion cell line (RGC-5) by whole-cell patch clamp.

Wang SJ, Xie LH, Heng B, Liu YQ.

Vis Neurosci. 2012 Nov;29(6):275-82. doi: 10.1017/S0952523812000272. Epub 2012 Oct 30.

PMID:
23110755
7.

Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.

Rothe T, Jüttner R, Bähring R, Grantyn R.

J Neurobiol. 1999 Feb 5;38(2):191-206.

PMID:
10022566
8.

Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity.

Chang L, He S.

Neuroscience. 2014 Jan 3;256:101-16. doi: 10.1016/j.neuroscience.2013.10.006. Epub 2013 Oct 18.

PMID:
24144626
9.

A patch-clamp investigation of membrane currents in a novel mammalian retinal ganglion cell line.

Moorhouse AJ, Li S, Vickery RM, Hill MA, Morley JW.

Brain Res. 2004 Apr 2;1003(1-2):205-8.

PMID:
15019582
10.

Influence of cell morphology in a computational model of ON and OFF retinal ganglion cells.

Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4553-6. doi: 10.1109/EMBC.2013.6610560.

PMID:
24110747
11.

Impulse encoding mechanisms of ganglion cells in the tiger salamander retina.

Fohlmeister JF, Miller RF.

J Neurophysiol. 1997 Oct;78(4):1935-47.

12.

Transient and sustained depolarization of retinal ganglion cells by Ih.

Tabata T, Ishida AT.

J Neurophysiol. 1996 May;75(5):1932-43.

PMID:
8734592
13.
14.

Intrinsic physiological properties of cat retinal ganglion cells.

O'Brien BJ, Isayama T, Richardson R, Berson DM.

J Physiol. 2002 Feb 1;538(Pt 3):787-802.

15.

Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.

Speer CM, Sun C, Liets LC, Stafford BK, Chapman B, Cheng HJ.

Neural Dev. 2014 Nov 7;9:25. doi: 10.1186/1749-8104-9-25.

16.
17.

Calcium-activated potassium conductances in retinal ganglion cells of the ferret.

Wang GY, Robinson DW, Chalupa LM.

J Neurophysiol. 1998 Jan;79(1):151-8.

18.

Modulation of gap-junction channel gating at zebrafish retinal electrical synapses.

McMahon DG, Brown DR.

J Neurophysiol. 1994 Nov;72(5):2257-68.

PMID:
7533830
19.
20.

Developmental maturation of passive electrical properties in retinal ganglion cells of rainbow trout.

Picones A, Chung SC, Korenbrot JI.

J Physiol. 2003 Apr 1;548(Pt 1):71-83. Epub 2003 Feb 7.

Supplemental Content

Support Center