Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Automated method for extraction of lung tumors using a machine learning classifier with knowledge of radiation oncologists on data sets of planning CT and FDG-PET/CT images.

Arimura H, Jin Z, Shioyama Y, Nakamura K, Magome T, Sasaki M.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2988-91. doi: 10.1109/EMBC.2013.6610168.

PMID:
24110355
2.

Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method.

Jin Z, Arimura H, Shioyama Y, Nakamura K, Kuwazuru J, Magome T, Yabu-Uchi H, Honda H, Hirata H, Sasaki M.

J Radiat Res. 2014 Nov;55(6):1153-62. doi: 10.1093/jrr/rru056.

3.

Application of partial volume effect correction and 4D PET in the quantification of FDG avid lung lesions.

Salavati A, Borofsky S, Boon-Keng TK, Houshmand S, Khiewvan B, Saboury B, Codreanu I, Torigian DA, Zaidi H, Alavi A.

Mol Imaging Biol. 2015 Feb;17(1):140-8. doi: 10.1007/s11307-014-0776-6.

PMID:
25080325
4.

A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm.

Zhao J, Ji G, Qiang Y, Han X, Pei B, Shi Z.

PLoS One. 2015 Apr 8;10(4):e0123694. doi: 10.1371/journal.pone.0123694.

5.

Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images.

Ikushima K, Arimura H, Jin Z, Yabu-Uchi H, Kuwazuru J, Shioyama Y, Sasaki T, Honda H, Sasaki M.

J Radiat Res. 2017 Jan;58(1):123-134. doi: 10.1093/jrr/rrw082.

6.

18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

Hanna GG, Carson KJ, Lynch T, McAleese J, Cosgrove VP, Eakin RL, Stewart DP, Zatari A, O'Sullivan JM, Hounsell AR.

Int J Radiat Oncol Biol Phys. 2010 Nov 15;78(4):1040-51. doi: 10.1016/j.ijrobp.2009.09.060.

PMID:
20350798
7.

Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning.

Yu H, Caldwell C, Mah K, Mozeg D.

IEEE Trans Med Imaging. 2009 Mar;28(3):374-83. doi: 10.1109/TMI.2008.2004425.

PMID:
19244009
8.

Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions.

Koopman D, van Dalen JA, Lagerweij MC, Arkies H, de Boer J, Oostdijk AH, Slump CH, Jager PL.

J Nucl Med Technol. 2015 Mar;43(1):21-7. doi: 10.2967/jnmt.114.147215.

9.

The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study.

Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE, Tirona R.

Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50.

PMID:
11872279
10.

Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ.

Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86.

PMID:
15093902
13.

Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.

Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, Grès B, El Balaa H, Keraudy K, Kerrou K, Montravers F, Milleron B, Lebeau B, Talbot JN.

Int J Radiat Oncol Biol Phys. 2005 Dec 1;63(5):1432-41.

PMID:
16125870
14.

Automated interpretation of PET/CT images in patients with lung cancer.

Gutte H, Jakobsson D, Olofsson F, Ohlsson M, Valind S, Loft A, Edenbrandt L, Kjaer A.

Nucl Med Commun. 2007 Feb;28(2):79-84.

PMID:
17198346
15.

Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer.

Spratt DE, Diaz R, McElmurray J, Csiki I, Duggan D, Lu B, Delbeke D.

Clin Nucl Med. 2010 Apr;35(4):237-43. doi: 10.1097/RLU.0b013e3181d18eb0.

PMID:
20305410
16.

The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.

Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A.

Int J Radiat Oncol Biol Phys. 2005 Nov 15;63(4):1016-23.

PMID:
15979817
17.

Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.

Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, Larson E, Chen AB.

Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e99-105. doi: 10.1016/j.ijrobp.2010.12.060.

PMID:
21377285
18.

Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer?

Fox JL, Rengan R, O'Meara W, Yorke E, Erdi Y, Nehmeh S, Leibel SA, Rosenzweig KE.

Int J Radiat Oncol Biol Phys. 2005 May 1;62(1):70-5.

PMID:
15850904
19.

Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images.

Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R, Khaouam N, Tirona R.

Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):618-25. doi: 10.1016/j.ijrobp.2009.04.043.

PMID:
19683403
20.

Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis.

Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp LJ, Comans EF, Uitterhoeve AL, Rodrigus PT, Kramer GW, Bussink J, De Jaeger K, Belderbos JS, Nowak PJ, van Herk M, Rasch CR.

Int J Radiat Oncol Biol Phys. 2006 Feb 1;64(2):435-48.

PMID:
16198064

Supplemental Content

Support Center