Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Perceptual modulation of motor--but not visual--responses in the frontal eye field during an urgent-decision task.

Costello MG, Zhu D, Salinas E, Stanford TR.

J Neurosci. 2013 Oct 9;33(41):16394-408. doi: 10.1523/JNEUROSCI.1899-13.2013.

2.

Task dependence of decision- and choice-related activity in monkey oculomotor thalamus.

Costello MG, Zhu D, May PJ, Salinas E, Stanford TR.

J Neurophysiol. 2016 Jan 1;115(1):581-601. doi: 10.1152/jn.00592.2015. Epub 2015 Oct 14.

3.

Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.

Thompson KG, Hanes DP, Bichot NP, Schall JD.

J Neurophysiol. 1996 Dec;76(6):4040-55.

PMID:
8985899
4.

Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.

Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG.

J Neurophysiol. 2009 May;101(5):2485-506. doi: 10.1152/jn.90824.2008. Epub 2009 Mar 4.

5.

Selection and maintenance of spatial information by frontal eye field neurons.

Armstrong KM, Chang MH, Moore T.

J Neurosci. 2009 Dec 16;29(50):15621-9. doi: 10.1523/JNEUROSCI.4465-09.2009.

6.
7.

The responses of visual neurons in the frontal eye field are biased for saccades.

Lawrence BM, Snyder LH.

J Neurosci. 2009 Nov 4;29(44):13815-22. doi: 10.1523/JNEUROSCI.2352-09.2009.

8.

A distinct contribution of the frontal eye field to the visual representation of saccadic targets.

Noudoost B, Clark KL, Moore T.

J Neurosci. 2014 Mar 5;34(10):3687-98. doi: 10.1523/JNEUROSCI.3824-13.2014.

9.

Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area.

Colby CL, Duhamel JR, Goldberg ME.

J Neurophysiol. 1996 Nov;76(5):2841-52.

PMID:
8930237
10.

Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.

Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR.

J Neurophysiol. 1996 Jan;75(1):454-68.

PMID:
8822570
11.

Neural mechanisms underlying target selection with saccadic eye movements.

Schiller PH, Tehovnik EJ.

Prog Brain Res. 2005;149:157-71. Review.

PMID:
16226583
12.
14.

A perceptual representation in the frontal eye field during covert visual search that is more reliable than the behavioral report.

Trageser JC, Monosov IE, Zhou Y, Thompson KG.

Eur J Neurosci. 2008 Dec;28(12):2542-9. doi: 10.1111/j.1460-9568.2008.06530.x. Epub 2008 Nov 21.

16.

Microstimulation of the frontal eye field and its effects on covert spatial attention.

Moore T, Fallah M.

J Neurophysiol. 2004 Jan;91(1):152-62. Epub 2003 Sep 17.

17.

Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.

Thompson KG, Bichot NP, Sato TR.

J Neurophysiol. 2005 Jan;93(1):337-51. Epub 2004 Aug 18.

19.

The human frontal oculomotor cortical areas contribute asymmetrically to motor planning in a gap saccade task.

van Donkelaar P, Lin Y, Hewlett D.

PLoS One. 2009 Sep 30;4(9):e7278. doi: 10.1371/journal.pone.0007278.

20.

Saliency and saccade encoding in the frontal eye field during natural scene search.

Fernandes HL, Stevenson IH, Phillips AN, Segraves MA, Kording KP.

Cereb Cortex. 2014 Dec;24(12):3232-45. doi: 10.1093/cercor/bht179. Epub 2013 Jul 17.

Supplemental Content

Support Center