Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Two-photon quantum interference in integrated multi-mode interference devices.

Poulios K, Fry D, Politi A, Ismail N, Wörhoff K, O'Brien JL, Thompson MG.

Opt Express. 2013 Oct 7;21(20):23401-9. doi: 10.1364/OE.21.023401.

PMID:
24104253
2.

Multimode quantum interference of photons in multiport integrated devices.

Peruzzo A, Laing A, Politi A, Rudolph T, O'Brien JL.

Nat Commun. 2011;2:224. doi: 10.1038/ncomms1228.

3.

Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip.

Xu X, Xie Z, Zheng J, Liang J, Zhong T, Yu M, Kocaman S, Lo GQ, Kwong DL, Englund DR, Wong FN, Wong CW.

Opt Express. 2013 Feb 25;21(4):5014-24. doi: 10.1364/OE.21.005014.

PMID:
23482034
4.

Ultracompact photonic crystal polarization beam splitter based on multimode interference.

Lu MF, Liao SM, Huang YT.

Appl Opt. 2010 Feb 1;49(4):724-31. doi: 10.1364/AO.49.000724.

PMID:
20119026
5.

All-silicon optical temperature sensor based on Multi-Mode Interference.

Irace A, Breglio G.

Opt Express. 2003 Nov 3;11(22):2807-12.

PMID:
19471398
6.

Two-photon quantum interference in the 1.5 mum telecommunication band.

Cho SB, Noh TG.

Opt Express. 2007 Jun 11;15(12):7591-5.

PMID:
19547085
7.

Non-classical interference in integrated 3D multiports.

Meany T, Delanty M, Gross S, Marshall GD, Steel MJ, Withford MJ.

Opt Express. 2012 Nov 19;20(24):26895-905. doi: 10.1364/OE.20.026895.

PMID:
23187543
8.

Tunable quantum interference in a 3D integrated circuit.

Chaboyer Z, Meany T, Helt LG, Withford MJ, Steel MJ.

Sci Rep. 2015 Apr 27;5:9601. doi: 10.1038/srep09601.

9.

Observation of Young's double-slit interference with the three-photon N00N state.

Kim YS, Kwon O, Lee SM, Lee JC, Kim H, Choi SK, Park HS, Kim YH.

Opt Express. 2011 Dec 5;19(25):24957-66. doi: 10.1364/OE.19.024957.

PMID:
22273889
10.

A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths.

Sauge S, Swillo M, Tengner M, Karlsson A.

Opt Express. 2008 Jun 23;16(13):9701-7.

PMID:
18575538
11.

Compact optical 90 degrees hybrid employing a tapered 2x4 MMI coupler serially connected by a 2x2 MMI coupler.

Jeong SH, Morito K.

Opt Express. 2010 Mar 1;18(5):4275-88. doi: 10.1364/OE.18.004275.

PMID:
20389439
12.

Quantum interference of electrically generated single photons from a quantum dot.

Patel RB, Bennett AJ, Cooper K, Atkinson P, Nicoll CA, Ritchie DA, Shields AJ.

Nanotechnology. 2010 Jul 9;21(27):274011. doi: 10.1088/0957-4484/21/27/274011. Epub 2010 Jun 22.

PMID:
20571198
13.

Silica-on-silicon waveguide quantum circuits.

Politi A, Cryan MJ, Rarity JG, Yu S, O'Brien JL.

Science. 2008 May 2;320(5876):646-9. doi: 10.1126/science.1155441. Epub 2008 Mar 27.

14.

Two-photon interference with a semiconductor integrated source at room temperature.

Caillet X, Orieux A, Lemaître A, Filloux P, Favero I, Leo G, Ducci S.

Opt Express. 2010 May 10;18(10):9967-75. doi: 10.1364/OE.18.009967.

PMID:
20588851
15.

High visibility two-photon interference with classical light.

Hong P, Xu L, Zhai Z, Zhang G.

Opt Express. 2013 Jun 17;21(12):14056-65. doi: 10.1364/OE.21.014056.

PMID:
23787595
16.
17.

All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device.

Kang I, Rasras M, Liu X, Chandrasekhar S, Cappuzzo M, Gomez LT, Chen YF, Buhl L, Cabot S, Jaques J.

Opt Express. 2011 May 9;19(10):9111-7. doi: 10.1364/OE.19.009111.

PMID:
21643165
18.
19.

De Broglie wavelength of a non-local four-photon state.

Walther P, Pan JW, Aspelmeyer M, Ursin R, Gasparoni S, Zeilinger A.

Nature. 2004 May 13;429(6988):158-61.

PMID:
15141205
20.

Highly indistinguishable heralded single-photon sources using parametric down conversion.

Tanida M, Okamoto R, Takeuchi S.

Opt Express. 2012 Jul 2;20(14):15275-85. doi: 10.1364/OE.20.015275.

PMID:
22772225

Supplemental Content

Support Center