Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Simultaneous generation of monoenergetic tunable protons and carbon ions from laser-driven nanofoils.

Yu TP, Yin Y, Zou DB, Ge ZY, Yang XH, Zhuo HB, Ma YY, Shao FQ, Pukhov A.

Opt Express. 2013 Sep 23;21(19):22558-65. doi: 10.1364/OE.21.022558.

PMID:
24104145
2.

Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil.

Yu TP, Pukhov A, Shvets G, Chen M.

Phys Rev Lett. 2010 Aug 6;105(6):065002. Epub 2010 Aug 4.

PMID:
20867984
3.

Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers.

Fourkal E, Velchev I, Ma CM.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2B):036412. Epub 2005 Mar 25.

PMID:
15903593
4.

Ion acceleration in multispecies targets driven by intense laser radiation pressure.

Kar S, Kakolee KF, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan XY, Zepf M, Borghesi M.

Phys Rev Lett. 2012 Nov 2;109(18):185006. Epub 2012 Nov 2.

PMID:
23215290
5.

Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse.

Chen M, Pukhov A, Yu TP, Sheng ZM.

Phys Rev Lett. 2009 Jul 10;103(2):024801. Epub 2009 Jul 10.

PMID:
19659213
6.

Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 x 10;{21} W/cm;{2}.

Yan XQ, Wu HC, Sheng ZM, Chen JE, Meyer-Ter-Vehn J.

Phys Rev Lett. 2009 Sep 25;103(13):135001. Epub 2009 Sep 23.

PMID:
19905516
7.

Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light.

Jung D, Yin L, Albright BJ, Gautier DC, Hörlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan XQ, Bowers KJ, Tajima T, Fernández JC, Habs D, Hegelich BM.

Phys Rev Lett. 2011 Sep 9;107(11):115002. Epub 2011 Sep 8.

PMID:
22026679
8.

Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions.

Kundrát P.

Phys Med Biol. 2006 Mar 7;51(5):1185-99. Epub 2006 Feb 8.

PMID:
16481687
9.

Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning.

Elsässer T, Weyrather WK, Friedrich T, Durante M, Iancu G, Krämer M, Kragl G, Brons S, Winter M, Weber KJ, Scholz M.

Int J Radiat Oncol Biol Phys. 2010 Nov 15;78(4):1177-83. doi: 10.1016/j.ijrobp.2010.05.014. Epub 2010 Aug 21.

PMID:
20732758
10.

Proposed double-layer target for the generation of high-quality laser-accelerated ion beams.

Esirkepov TZh, Bulanov SV, Nishihara K, Tajima T, Pegoraro F, Khoroshkov VS, Mima K, Daido H, Kato Y, Kitagawa Y, Nagai K, Sakabe S.

Phys Rev Lett. 2002 Oct 21;89(17):175003. Epub 2002 Oct 8.

PMID:
12398678
11.

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

Mangles SP, Murphy CD, Najmudin Z, Thomas AG, Collier JL, Dangor AE, Divall EJ, Foster PS, Gallacher JG, Hooker CJ, Jaroszynski DA, Langley AJ, Mori WB, Norreys PA, Tsung FS, Viskup R, Walton BR, Krushelnick K.

Nature. 2004 Sep 30;431(7008):535-8.

PMID:
15457251
12.

Bubble regime for ion acceleration in a laser-driven plasma.

Shen B, Li Y, Yu MY, Cary J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):055402. Epub 2007 Nov 9.

PMID:
18233710
13.

Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets.

Schwoerer H, Pfotenhauer S, Jäckel O, Amthor KU, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham KW, Esirkepov T.

Nature. 2006 Jan 26;439(7075):445-8.

PMID:
16437110
14.

Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration.

Sakaki H, Nishiuchi M, Maeda S, Sagisaka A, Pirozhkov AS, Pikuz T, Faenov A, Ogura K, Fukami T, Matsukawa K, Kanasaki M, Fukuda Y, Yogo A, Esirkepov T, Kiriyama H, Shimomura T, Nakai Y, Tanoue M, Torimoto K, Okamoto M, Sato T, Niita K, Tamura J, Nishio K, Sako H, Yamauchi T, Watanabe Y, Bulanov S, Kondo K.

Rev Sci Instrum. 2014 Feb;85(2):02A705. doi: 10.1063/1.4825154.

PMID:
24593439
15.

Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines.

Belli M, Bettega D, Calzolari P, Cherubini R, Cuttone G, Durante M, Esposito G, Furusawa Y, Gerardi S, Gialanella G, Grossi G, Manti L, Marchesini R, Pugliese M, Scampoli P, Simone G, Sorrentino E, Tabocchini MA, Tallone L.

J Radiat Res. 2008 Nov;49(6):597-607. Epub 2008 Nov 6.

16.

Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P.

Phys Rev Lett. 2010 Oct 8;105(15):155002. Epub 2010 Oct 4.

PMID:
21230914
17.

Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets.

Zou DB, Pukhov A, Yi LQ, Zhou HB, Yu TP, Yin Y, Shao FQ.

Sci Rep. 2017 Feb 20;7:42666. doi: 10.1038/srep42666.

18.

Comparison of cellular lethality in DNA repair-proficient or -deficient cell lines resulting from exposure to 70 MeV/n protons or 290 MeV/n carbon ions.

Genet SC, Maeda J, Fujisawa H, Yurkon CR, Fujii Y, Romero AM, Genik PC, Fujimori A, Kitamura H, Kato TA.

Oncol Rep. 2012 Nov;28(5):1591-6. doi: 10.3892/or.2012.1982. Epub 2012 Aug 22.

PMID:
22923057
19.

Bacterial cells enhance laser driven ion acceleration.

Dalui M, Kundu M, Trivikram TM, Rajeev R, Ray K, Krishnamurthy M.

Sci Rep. 2014 Aug 8;4:6002. doi: 10.1038/srep06002.

20.

Radiotherapy systems using proton and carbon beams.

Jongen Y.

Bull Mem Acad R Med Belg. 2008;163(10-12):471-8; discussion 479-80.

PMID:
20120253

Supplemental Content

Support Center