Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Necroptosis in immunity and ischemia-reperfusion injury.

Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM.

Am J Transplant. 2013 Nov;13(11):2797-804. doi: 10.1111/ajt.12448. Epub 2013 Sep 18. Review.

2.

RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival.

Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar AM.

Am J Transplant. 2013 Nov;13(11):2805-18. doi: 10.1111/ajt.12447. Epub 2013 Sep 18.

3.

Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.

Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S.

Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12024-9. doi: 10.1073/pnas.1305538110. Epub 2013 Jul 1.

4.

Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury.

Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S.

Kidney Int. 2012 Apr;81(8):751-61. doi: 10.1038/ki.2011.450. Epub 2012 Jan 11.

5.

RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis.

Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M.

Nature. 2014 Sep 4;513(7516):90-4. doi: 10.1038/nature13608. Epub 2014 Aug 17.

6.

Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation.

Shindo R, Kakehashi H, Okumura K, Kumagai Y, Nakano H.

Biochem Biophys Res Commun. 2013 Jun 28;436(2):212-6. doi: 10.1016/j.bbrc.2013.05.075. Epub 2013 May 29.

PMID:
23727581
7.

RIPK3-mediated necroptosis regulates cardiac allograft rejection.

Pavlosky A, Lau A, Su Y, Lian D, Huang X, Yin Z, Haig A, Jevnikar AM, Zhang ZX.

Am J Transplant. 2014 Aug;14(8):1778-90. doi: 10.1111/ajt.12779. Epub 2014 Jul 1.

8.

[Programmed necrosis: a new target for
ischemia reperfusion injury].

Li X, Ming Y, Niu Y, Liu Q, Ye Q.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016 Jul;41(7):765-70. doi: 10.11817/j.issn.1672-7347.2016.07.017. Chinese.

9.

RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis.

Kearney CJ, Cullen SP, Clancy D, Martin SJ.

FEBS J. 2014 Nov;281(21):4921-34. doi: 10.1111/febs.13034. Epub 2014 Oct 4.

10.

Synchronized renal tubular cell death involves ferroptosis.

Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Bräsen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S.

Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16836-41. doi: 10.1073/pnas.1415518111. Epub 2014 Nov 10.

11.

Many stimuli pull the necrotic trigger, an overview.

Vanlangenakker N, Vanden Berghe T, Vandenabeele P.

Cell Death Differ. 2012 Jan;19(1):75-86. doi: 10.1038/cdd.2011.164. Epub 2011 Nov 11. Review.

12.

Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage.

Dvoriantchikova G, Degterev A, Ivanov D.

Exp Eye Res. 2014 Jun;123:1-7. doi: 10.1016/j.exer.2014.04.009. Epub 2014 Apr 19.

13.

Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis.

Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM.

Science. 2014 Mar 21;343(6177):1357-60. doi: 10.1126/science.1249361. Epub 2014 Feb 20.

PMID:
24557836
14.

Simvastatin pretreatment reduces caspase-9 and RIPK1 protein activity in rat cardiac allograft ischemia-reperfusion.

Tuuminen R, Holmström E, Raissadati A, Saharinen P, Rouvinen E, Krebs R, Lemström KB.

Transpl Immunol. 2016 Jul;37:40-5. doi: 10.1016/j.trim.2016.05.001. Epub 2016 May 4.

PMID:
27155462
15.

RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.

Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D.

Cell Death Differ. 2016 Sep 1;23(9):1565-76. doi: 10.1038/cdd.2016.46. Epub 2016 May 13.

16.

Necroptosis and Inflammation.

Newton K, Manning G.

Annu Rev Biochem. 2016 Jun 2;85:743-63. doi: 10.1146/annurev-biochem-060815-014830. Epub 2016 Feb 8. Review.

PMID:
26865533
17.

Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death.

Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK.

Cell Death Dis. 2015 Feb 12;6:e1636. doi: 10.1038/cddis.2015.16.

18.

RIPK1 and RIPK3: critical regulators of inflammation and cell death.

Newton K.

Trends Cell Biol. 2015 Jun;25(6):347-53. doi: 10.1016/j.tcb.2015.01.001. Epub 2015 Feb 4. Review.

PMID:
25662614
19.

Hepatocyte necroptosis induced by ischemic acute kidney injury in rats.

Bao C, Shao Y, Li X.

Ultrastruct Pathol. 2014 May;38(3):217-23. doi: 10.3109/01913123.2014.895788. Epub 2014 Mar 31.

PMID:
24684548
20.

Necroptosis: the release of damage-associated molecular patterns and its physiological relevance.

Kaczmarek A, Vandenabeele P, Krysko DV.

Immunity. 2013 Feb 21;38(2):209-23. doi: 10.1016/j.immuni.2013.02.003. Review.

Supplemental Content

Support Center