Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Coevolutionary analyses of the relationships between piroplasmids and their hard tick hosts.

Gou H, Guan G, Liu A, Ma M, Chen Z, Liu Z, Ren Q, Li Y, Yang J, Yin H, Luo J.

Ecol Evol. 2013 Sep;3(9):2985-93. doi: 10.1002/ece3.685. Epub 2013 Jul 30.

2.

Phylogeny and evolution of the Piroplasmida as inferred from 18S rRNA sequences.

Lack JB, Reichard MV, Van Den Bussche RA.

Int J Parasitol. 2012 Apr;42(4):353-63. doi: 10.1016/j.ijpara.2012.02.005. Epub 2012 Mar 13.

PMID:
22429769
3.

Piroplasmids and ticks: a long-lasting intimate relationship.

Florin-Christensen M, Schnittger L.

Front Biosci (Landmark Ed). 2009 Jan 1;14:3064-73. Review.

PMID:
19273257
4.

A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae).

Nava S, Guglielmone AA.

Bull Entomol Res. 2013 Apr;103(2):216-24. doi: 10.1017/S0007485312000557. Epub 2012 Sep 7.

PMID:
22954015
5.
6.

Babesia: a world emerging.

Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA.

Infect Genet Evol. 2012 Dec;12(8):1788-809. doi: 10.1016/j.meegid.2012.07.004. Epub 2012 Jul 31. Review.

PMID:
22871652
7.

Long-term coevolution between avian brood parasites and their hosts.

Soler M.

Biol Rev Camb Philos Soc. 2014 Aug;89(3):688-704. doi: 10.1111/brv.12075. Epub 2013 Dec 14.

PMID:
24330159
8.

Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales.

Kang YJ, Diao XN, Zhao GY, Chen MH, Xiong Y, Shi M, Fu WM, Guo YJ, Pan B, Chen XP, Holmes EC, Gillespie JJ, Dumler SJ, Zhang YZ.

BMC Evol Biol. 2014 Jul 30;14:167. doi: 10.1186/s12862-014-0167-2.

9.

A review of piroplasmid infections in wild carnivores worldwide: importance for domestic animal health and wildlife conservation.

Alvarado-Rybak M, Solano-Gallego L, Millán J.

Parasit Vectors. 2016 Oct 10;9(1):538. Review.

10.

Phylogeographic Structure in Penguin Ticks across an Ocean Basin Indicates Allopatric Divergence and Rare Trans-Oceanic Dispersal.

Moon KL, Banks SC, Fraser CI.

PLoS One. 2015 Jun 17;10(6):e0128514. doi: 10.1371/journal.pone.0128514. eCollection 2015.

11.

The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense.

Maruyama SR, Anatriello E, Anderson JM, Ribeiro JM, Brandão LG, Valenzuela JG, Ferreira BR, Garcia GR, Szabó MP, Patel S, Bishop R, de Miranda-Santos IK.

BMC Genomics. 2010 Jun 8;11:363. doi: 10.1186/1471-2164-11-363.

12.

The mitochondrial genomes of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae) and Argas africolumbae (Ixodoidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters.

Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA.

PLoS One. 2012;7(11):e49461. doi: 10.1371/journal.pone.0049461. Epub 2012 Nov 8. Erratum in: PLoS One. 2013;8(7). doi:10.1371/annotation/19fe1c45-57c3-4008-9733-ebdf39202075.

13.

Co-phylogenetic analysis of Anaplasma phagocytophilum and its vectors, Ixodes spp. ticks.

Foley J, Nieto NC, Foley P, Teglas MB.

Exp Appl Acarol. 2008 Aug;45(3-4):155-70. doi: 10.1007/s10493-008-9173-7. Epub 2008 Jul 22.

PMID:
18648997
14.

Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks.

Mans BJ, de Klerk D, Pienaar R, Latif AA.

PLoS One. 2011;6(8):e23675. doi: 10.1371/journal.pone.0023675. Epub 2011 Aug 17.

15.

Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts.

Murfin KE, Lee MM, Klassen JL, McDonald BR, Larget B, Forst S, Stock SP, Currie CR, Goodrich-Blair H.

MBio. 2015 Jun 4;6(3):e00076. doi: 10.1128/mBio.00076-15.

16.

Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities.

Koskella B, Brockhurst MA.

FEMS Microbiol Rev. 2014 Sep;38(5):916-31. doi: 10.1111/1574-6976.12072. Epub 2014 Mar 27. Review.

17.

Patterns of co-speciation and host switching in primate malaria parasites.

Garamszegi LZ.

Malar J. 2009 May 22;8:110. doi: 10.1186/1475-2875-8-110.

18.

Recurrent evolution of host-specialized races in a globally distributed parasite.

McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Bohec CL, Maho YL, Gauthier-Clerc M.

Proc Biol Sci. 2005 Nov 22;272(1579):2389-95.

19.

Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex.

Estrada-Peña A, Sprong H, Cabezas-Cruz A, de la Fuente J, Ramo A, Coipan EC.

Parasit Vectors. 2016 Sep 23;9(1):517.

20.

Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks.

Porretta D, Latrofa MS, Dantas-Torres F, Mastrantonio V, Iatta R, Otranto D, Urbanelli S.

Parasit Vectors. 2016 Dec 12;9(1):640.

Supplemental Content

Support Center