Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Phenylalanine catabolism in Archaeoglobus fulgidus VC-16.

Parthasarathy A, Kahnt J, Chowdhury NP, Buckel W.

Arch Microbiol. 2013 Dec;195(12):781-97. doi: 10.1007/s00203-013-0925-3. Epub 2013 Oct 6.

PMID:
24096454
3.

Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.

Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Réa A.

ISME J. 2014 Nov;8(11):2153-66. doi: 10.1038/ismej.2014.58. Epub 2014 Apr 24.

5.

Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses.

Hocking WP, Roalkvam I, Magnussen C, Stokke R, Steen IH.

Archaea. 2015 Aug 6;2015:235384. doi: 10.1155/2015/235384. eCollection 2015.

6.

ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.

Labes A, Schönheit P.

Arch Microbiol. 2003 Jul;180(1):69-75. Epub 2003 Jun 7.

PMID:
12802482
7.

Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus.

Khelifi N, Grossi V, Hamdi M, Dolla A, Tholozan JL, Ollivier B, Hirschler-Réa A.

Appl Environ Microbiol. 2010 May;76(9):3057-60. doi: 10.1128/AEM.02810-09. Epub 2010 Mar 19.

8.

Conserving energy with sulfate around 100 °C--structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus.

Parey K, Fritz G, Ermler U, Kroneck PM.

Metallomics. 2013 Apr;5(4):302-17. doi: 10.1039/c2mt20225e. Review.

PMID:
23324858
9.

Characterization of a key trifunctional enzyme for aromatic amino acid biosynthesis in Archaeoglobus fulgidus.

Lim S, Springstead JR, Yu M, Bartkowski W, Schröder I, Monbouquette HG.

Extremophiles. 2009 Jan;13(1):191-8. doi: 10.1007/s00792-008-0209-z. Epub 2008 Dec 11.

PMID:
19082689
10.

Room-temperature synthesis of L-alanine using the alanine dehydrogenase of the hyperthermophilic archaeon Archaeoglobus fulgidus.

Vadas AJ, Schröder I, Monbouquette HG.

Biotechnol Prog. 2002 Jul-Aug;18(4):909-11.

PMID:
12153329
11.
12.
13.
14.

Temperature effect on the sulfur isotope fractionation during sulfate reduction by two strains of the hyperthermophilic Archaeoglobus fulgidus.

Mitchell K, Heyer A, Canfield DE, Hoek J, Habicht KS.

Environ Microbiol. 2009 Dec;11(12):2998-3006. doi: 10.1111/j.1462-2920.2009.02002.x. Epub 2009 Jul 16.

PMID:
19624709
15.

Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin.

Abreu IA, Saraiva LM, Carita J, Huber H, Stetter KO, Cabelli D, Teixeira M.

Mol Microbiol. 2000 Oct;38(2):322-34.

16.

[High-temperature microbial sulfate reduction can be accompanied by magnetite formation].

Slobodkin AI, Chistiakova NI, Rusakov VS.

Mikrobiologiia. 2004 Jul-Aug;73(4):553-7. Russian.

PMID:
15521182
19.

Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus.

Dai YR, Reed DW, Millstein JH, Hartzell PL, Grahame DA, DeMoll E.

Arch Microbiol. 1998 Jun;169(6):525-9.

PMID:
9575239
20.

Methylpurine DNA glycosylase of the hyperthermophilic archaeon Archaeoglobus fulgidus.

Birkeland NK, Anensen H, Knaevelsrud I, Kristoffersen W, Bjørås M, Robb FT, Klungland A, Bjelland S.

Biochemistry. 2002 Oct 22;41(42):12697-705.

PMID:
12379112

Supplemental Content

Support Center