Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

Striated rootlet and nonfilamentous forms of rootletin maintain ciliary function.

Mohan S, Timbers TA, Kennedy J, Blacque OE, Leroux MR.

Curr Biol. 2013 Oct 21;23(20):2016-22. doi: 10.1016/j.cub.2013.08.033. Epub 2013 Oct 3.

2.

The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport.

Blacque OE, Li C, Inglis PN, Esmail MA, Ou G, Mah AK, Baillie DL, Scholey JM, Leroux MR.

Mol Biol Cell. 2006 Dec;17(12):5053-62. Epub 2006 Oct 4.

3.

Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation.

Haycraft CJ, Schafer JC, Zhang Q, Taulman PD, Yoder BK.

Exp Cell Res. 2003 Apr 1;284(2):251-63.

PMID:
12651157
4.

Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport.

Blacque OE, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley SJ, Badano JL, Mah AK, Beales PL, Davidson WS, Johnsen RC, Audeh M, Plasterk RH, Baillie DL, Katsanis N, Quarmby LM, Wicks SR, Leroux MR.

Genes Dev. 2004 Jul 1;18(13):1630-42.

5.

Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia.

Efimenko E, Blacque OE, Ou G, Haycraft CJ, Yoder BK, Scholey JM, Leroux MR, Swoboda P.

Mol Biol Cell. 2006 Nov;17(11):4801-11. Epub 2006 Sep 6.

6.

Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25.

Jensen VL, Bialas NJ, Bishop-Hurley SL, Molday LL, Kida K, Nguyen PA, Blacque OE, Molday RS, Leroux MR, Riddle DL.

PLoS Genet. 2010 Nov 24;6(11):e1001199. doi: 10.1371/journal.pgen.1001199.

7.

Functional genomics of the cilium, a sensory organelle.

Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK, McKay SJ, Huang P, Swoboda P, Jones SJ, Marra MA, Baillie DL, Moerman DG, Shaham S, Leroux MR.

Curr Biol. 2005 May 24;15(10):935-41.

8.

Functional genomics of intraflagellar transport-associated proteins in C. elegans.

Inglis PN, Blacque OE, Leroux MR.

Methods Cell Biol. 2009;93:267-304. doi: 10.1016/S0091-679X(08)93014-4. Epub 2009 Dec 4.

PMID:
20409822
9.

Analysis of intraflagellar transport in C. elegans sensory cilia.

Hao L, Acar S, Evans J, Ou G, Scholey JM.

Methods Cell Biol. 2009;93:235-66. doi: 10.1016/S0091-679X(08)93013-2. Epub 2009 Dec 4.

PMID:
20409821
10.

Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport.

Jensen VL, Carter S, Sanders AA, Li C, Kennedy J, Timbers TA, Cai J, Scheidel N, Kennedy BN, Morin RD, Leroux MR, Blacque OE.

PLoS Genet. 2016 Dec 8;12(12):e1006469. doi: 10.1371/journal.pgen.1006469. eCollection 2016 Dec.

11.

Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments.

Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, Lu Y, Acar S, Prevo B, Shaham S, Scholey JM.

Nat Cell Biol. 2011 Jun 5;13(7):790-8. doi: 10.1038/ncb2268.

12.

Measuring rates of intraflagellar transport along Caenorhabditis elegans sensory cilia using fluorescence microscopy.

Brust-Mascher I, Ou G, Scholey JM.

Methods Enzymol. 2013;524:285-304. doi: 10.1016/B978-0-12-397945-2.00016-0.

PMID:
23498746
13.

An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes.

Li C, Inglis PN, Leitch CC, Efimenko E, Zaghloul NA, Mok CA, Davis EE, Bialas NJ, Healey MP, Héon E, Zhen M, Swoboda P, Katsanis N, Leroux MR.

PLoS Genet. 2008 Mar 28;4(3):e1000044. doi: 10.1371/journal.pgen.1000044.

14.

Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia.

Kaplan OI, Doroquez DB, Cevik S, Bowie RV, Clarke L, Sanders AA, Kida K, Rappoport JZ, Sengupta P, Blacque OE.

Curr Biol. 2012 Mar 20;22(6):451-60. doi: 10.1016/j.cub.2012.01.060. Epub 2012 Feb 16.

15.

Functional coordination of intraflagellar transport motors.

Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM.

Nature. 2005 Jul 28;436(7050):583-7.

PMID:
16049494
16.

The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans.

Bacaj T, Lu Y, Shaham S.

Genetics. 2008 Feb;178(2):989-1002. doi: 10.1534/genetics.107.082453. Epub 2008 Feb 1.

17.

Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain.

Cevik S, Sanders AA, Van Wijk E, Boldt K, Clarke L, van Reeuwijk J, Hori Y, Horn N, Hetterschijt L, Wdowicz A, Mullins A, Kida K, Kaplan OI, van Beersum SE, Man Wu K, Letteboer SJ, Mans DA, Katada T, Kontani K, Ueffing M, Roepman R, Kremer H, Blacque OE.

PLoS Genet. 2013;9(12):e1003977. doi: 10.1371/journal.pgen.1003977. Epub 2013 Dec 5.

18.

Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes.

Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J.

Nat Commun. 2013;4:2750. doi: 10.1038/ncomms3750.

19.

Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation.

Kunitomo H, Iino Y.

Genes Cells. 2008 Jan;13(1):13-25. doi: 10.1111/j.1365-2443.2007.01147.x.

20.

SQL-1, homologue of the Golgi protein GMAP210, modulates intraflagellar transport in C. elegans.

Broekhuis JR, Rademakers S, Burghoorn J, Jansen G.

J Cell Sci. 2013 Apr 15;126(Pt 8):1785-95. doi: 10.1242/jcs.116640. Epub 2013 Feb 26.

Supplemental Content

Support Center