Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Dynamics in hybrid complex systems of switches and oscillators.

Taylor D, Fertig EJ, Restrepo JG.

Chaos. 2013 Sep;23(3):033142. doi: 10.1063/1.4822017.

2.

Synchronization properties of network motifs: influence of coupling delay and symmetry.

D'Huys O, Vicente R, Erneux T, Danckaert J, Fischer I.

Chaos. 2008 Sep;18(3):037116. doi: 10.1063/1.2953582.

PMID:
19045490
3.

Generic behavior of master-stability functions in coupled nonlinear dynamical systems.

Huang L, Chen Q, Lai YC, Pecora LM.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036204. Epub 2009 Sep 15.

PMID:
19905197
4.

Multiscale dynamics in communities of phase oscillators.

Anderson D, Tenzer A, Barlev G, Girvan M, Antonsen TM, Ott E.

Chaos. 2012 Mar;22(1):013102. doi: 10.1063/1.3672513.

PMID:
22462978
5.

Synchronization regimes in conjugate coupled chaotic oscillators.

Karnatak R, Ramaswamy R, Prasad A.

Chaos. 2009 Sep;19(3):033143. doi: 10.1063/1.3236385.

PMID:
19792023
6.

Low dimensional behavior of large systems of globally coupled oscillators.

Ott E, Antonsen TM.

Chaos. 2008 Sep;18(3):037113. doi: 10.1063/1.2930766.

PMID:
19045487
7.

External periodic driving of large systems of globally coupled phase oscillators.

Antonsen TM Jr, Faghih RT, Girvan M, Ott E, Platig J.

Chaos. 2008 Sep;18(3):037112. doi: 10.1063/1.2952447.

PMID:
19045486
8.

Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

Heitmann S, Ermentrout GB.

Biol Cybern. 2015 Jun;109(3):333-47. doi: 10.1007/s00422-015-0646-6. Epub 2015 Feb 13.

PMID:
25677527
9.

Long-term fluctuations in globally coupled phase oscillators with general coupling: finite size effects.

Nishikawa I, Tanaka G, Horita T, Aihara K.

Chaos. 2012 Mar;22(1):013133. doi: 10.1063/1.3692966.

PMID:
22463009
10.

Adaptive synchronization of coupled chaotic oscillators.

Ravoori B, Cohen AB, Setty AV, Sorrentino F, Murphy TE, Ott E, Roy R.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056205. Epub 2009 Nov 13.

PMID:
20365058
11.

Noise-controlled oscillations and their bifurcations in coupled phase oscillators.

Zaks MA, Neiman AB, Feistel S, Schimansky-Geier L.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066206. Epub 2003 Dec 23.

PMID:
14754296
12.

Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony.

Baibolatov Y, Rosenblum M, Zhanabaev ZZh, Kyzgarina M, Pikovsky A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046211. Epub 2009 Oct 22.

PMID:
19905419
13.

Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: an experimental study.

Temirbayev AA, Nalibayev YD, Zhanabaev ZZh, Ponomarenko VI, Rosenblum M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062917. Epub 2013 Jun 25.

PMID:
23848758
14.

Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.

Wang Z, Duan Z, Cao J.

Chaos. 2012 Mar;22(1):013140. doi: 10.1063/1.3692971.

PMID:
22463016
15.

Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.

Leoni M, Liverpool TB.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):040901. Epub 2012 Apr 5.

PMID:
22680412
16.

Complete chaotic synchronization and exclusion of mutual Pyragas control in two delay-coupled Rössler-type oscillators.

Jüngling T, Benner H, Shirahama H, Fukushima K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056208. Epub 2011 Nov 8.

PMID:
22181485
17.

Quantifying the dynamics of coupled networks of switches and oscillators.

Francis MR, Fertig EJ.

PLoS One. 2012;7(1):e29497. doi: 10.1371/journal.pone.0029497. Epub 2012 Jan 5.

18.

Multistability of twisted states in non-locally coupled Kuramoto-type models.

Girnyk T, Hasler M, Maistrenko Y.

Chaos. 2012 Mar;22(1):013114. doi: 10.1063/1.3677365.

PMID:
22462990
19.

Complete periodic synchronization in coupled systems.

Zou W, Zhan M.

Chaos. 2008 Dec;18(4):043115. doi: 10.1063/1.3025253.

PMID:
19123625
20.

Stability diagram for the forced Kuramoto model.

Childs LM, Strogatz SH.

Chaos. 2008 Dec;18(4):043128. doi: 10.1063/1.3049136.

PMID:
19123638

Supplemental Content

Support Center