Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Pinning controllability of complex networks with community structure.

Miao Q, Tang Y, Kurths J, Fang JA, Wong WK.

Chaos. 2013 Sep;23(3):033114. doi: 10.1063/1.4816009.

PMID:
24089950
2.

Node-to-node pinning control of complex networks.

Porfiri M, Fiorilli F.

Chaos. 2009 Mar;19(1):013122. doi: 10.1063/1.3080192.

PMID:
19334986
3.

Pinning control of fractional-order weighted complex networks.

Tang Y, Wang Z, Fang JA.

Chaos. 2009 Mar;19(1):013112. doi: 10.1063/1.3068350.

PMID:
19334976
4.

Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach.

Tang Y, Gao H, Lu J, Kurths JK.

IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1804-15. doi: 10.1109/TNNLS.2013.2295966.

PMID:
25291734
5.

Optimal pinning synchronization on directed complex network.

Nian F, Wang X.

Chaos. 2011 Dec;21(4):043131. doi: 10.1063/1.3665699.

PMID:
22225368
6.
7.

Optimal pinning controllability of complex networks: dependence on network structure.

Jalili M, Askari Sichani O, Yu X.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012803. Epub 2015 Jan 5.

PMID:
25679653
8.

Controllability of complex networks via pinning.

Sorrentino F, di Bernardo M, Garofalo F, Chen G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046103. Epub 2007 Apr 3.

PMID:
17500957
9.

Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains.

Zhou MY, Zhuo Z, Liao H, Fu ZQ, Cai SM.

Sci Rep. 2015 Dec 2;5:17459. doi: 10.1038/srep17459.

10.

Effects of the network structural properties on its controllability.

Sorrentino F.

Chaos. 2007 Sep;17(3):033101.

PMID:
17902983
11.

Pinning synchronization of delayed dynamical networks via periodically intermittent control.

Xia W, Cao J.

Chaos. 2009 Mar;19(1):013120. doi: 10.1063/1.3071933.

PMID:
19334984
12.

Criteria for stochastic pinning control of networks of chaotic maps.

Mwaffo V, DeLellis P, Porfiri M.

Chaos. 2014 Mar;24(1):013101. doi: 10.1063/1.4861075.

PMID:
24697363
13.

Community structures and role detection in music networks.

Teitelbaum T, Balenzuela P, Cano P, Buldú JM.

Chaos. 2008 Dec;18(4):043105. doi: 10.1063/1.2988285.

PMID:
19123615
14.

Network controllability is determined by the density of low in-degree and out-degree nodes.

Menichetti G, Dall'Asta L, Bianconi G.

Phys Rev Lett. 2014 Aug 15;113(7):078701. Epub 2014 Aug 13.

PMID:
25170736
15.

Nodal dynamics, not degree distributions, determine the structural controllability of complex networks.

Cowan NJ, Chastain EJ, Vilhena DA, Freudenberg JS, Bergstrom CT.

PLoS One. 2012;7(6):e38398. doi: 10.1371/journal.pone.0038398. Epub 2012 Jun 22.

16.

Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization.

Jin XZ, Yang GH, Che WW.

IEEE Trans Neural Netw Learn Syst. 2012 Sep;23(9):1345-55. doi: 10.1109/TNNLS.2012.2202246.

PMID:
24807920
17.

Eigenvector centrality of nodes in multiplex networks.

Solá L, Romance M, Criado R, Flores J, García del Amo A, Boccaletti S.

Chaos. 2013 Sep;23(3):033131. doi: 10.1063/1.4818544.

PMID:
24089967
18.

Driving-based generalized synchronization in two-layer networks via pinning control.

Ning D, Wu X, Lu JA, Lü J.

Chaos. 2015 Nov;25(11):113104. doi: 10.1063/1.4935069.

PMID:
26627564
19.

Enhanced controllability of domain-wall pinning by asymmetric control of domain-wall injection.

Ahn SM, Moon KW.

Nanotechnology. 2013 Mar 15;24(10):105304. doi: 10.1088/0957-4484/24/10/105304. Epub 2013 Feb 15.

PMID:
23416725
20.

Traveling and pinned fronts in bistable reaction-diffusion systems on networks.

Kouvaris NE, Kori H, Mikhailov AS.

PLoS One. 2012;7(9):e45029. doi: 10.1371/journal.pone.0045029. Epub 2012 Sep 28.

Supplemental Content

Support Center