Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Thermal activation of catalytic microjets in blood samples using microfluidic chips.

Soler L, Martínez-Cisneros C, Swiersy A, Sánchez S, Schmidt OG.

Lab Chip. 2013 Nov 21;13(22):4299-303. doi: 10.1039/c3lc50756d.

2.

Challenges of the movement of catalytic micromotors in blood.

Zhao G, Viehrig M, Pumera M.

Lab Chip. 2013 May 21;13(10):1930-6. doi: 10.1039/c3lc41423j. Epub 2013 Apr 12.

PMID:
23580034
3.

Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips.

Restrepo-Pérez L, Soler L, Martínez-Cisneros CS, Sánchez S, Schmidt OG.

Lab Chip. 2014 May 7;14(9):1515-8. doi: 10.1039/c3lc51419f. Epub 2014 Mar 19.

4.

Passive regulation of volume-flow ratio for microfluidic streams with different hydrophilicity and viscosity.

Kim SJ, Lim YT, Yang H, Kim K, Kim YT.

Electrophoresis. 2010 Jan;31(4):709-13. doi: 10.1002/elps.200900551. Erratum in: Electrophoresis. 2010 Apr;31(8):1431.

PMID:
20094991
5.

Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.

Gui L, Ren CL.

Langmuir. 2008 Mar 18;24(6):2938-46. doi: 10.1021/la703201p. Epub 2008 Feb 8.

PMID:
18257592
6.

Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

Li J, Huang G, Ye M, Li M, Liu R, Mei Y.

Nanoscale. 2011 Dec;3(12):5083-9. doi: 10.1039/c1nr10840a. Epub 2011 Nov 7.

PMID:
22057905
7.

Superfast motion of catalytic microjet engines at physiological temperature.

Sanchez S, Ananth AN, Fomin VM, Viehrig M, Schmidt OG.

J Am Chem Soc. 2011 Sep 28;133(38):14860-3. doi: 10.1021/ja205012j. Epub 2011 Aug 23.

PMID:
21848337
8.

Laminated thin-film Teflon chips for petrochemical applications.

de Haas TW, Fadaei H, Sinton D.

Lab Chip. 2012 Nov 7;12(21):4236-9. doi: 10.1039/c2lc40932a.

PMID:
22971914
9.

Reynolds numbers influence the directionality of self-propelled microjet engines in the 10(-4) regime.

Zhao G, Nguyen NT, Pumera M.

Nanoscale. 2013 Aug 21;5(16):7277-83. doi: 10.1039/c3nr01891a. Epub 2013 Jul 1.

PMID:
23817355
10.

Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere.

Wang WH, Zhang ZL, Xie YN, Wang L, Yi S, Liu K, Liu J, Pang DW, Zhao XZ.

Langmuir. 2007 Nov 6;23(23):11924-31. Epub 2007 Oct 5.

PMID:
17918864
11.

Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.

Ziemecka I, Haut B, Scheid B.

Lab Chip. 2015 Jan 21;15(2):504-11. doi: 10.1039/c4lc00886c.

PMID:
25407090
12.

Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.

Lim HJ, Nam JH, Lee YJ, Shin S.

Rev Sci Instrum. 2009 Sep;80(9):096101. doi: 10.1063/1.3223534.

PMID:
19791972
13.

High-throughput biophysical measurement of human red blood cells.

Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y.

Lab Chip. 2012 Jul 21;12(14):2560-7. doi: 10.1039/c2lc21210b. Epub 2012 May 14.

PMID:
22581052
14.

Propulsion Mechanism of Catalytic Microjet Engines.

Fomin VM, Hippler M, Magdanz V, Soler L, Sanchez S, Schmidt OG.

IEEE Trans Robot. 2014 Feb 1;30(1):40-48.

15.

Nanoliter viscometer for analyzing blood plasma and other liquid samples.

Srivastava N, Davenport RD, Burns MA.

Anal Chem. 2005 Jan 15;77(2):383-92.

PMID:
15649032
16.

Single cell membrane poration by bubble-induced microjets in a microfluidic chip.

Li ZG, Liu AQ, Klaseboer E, Zhang JB, Ohl CD.

Lab Chip. 2013 Mar 21;13(6):1144-50. doi: 10.1039/c3lc41252k.

PMID:
23364762
17.

A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami.

Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF.

Lab Chip. 2012 Jan 7;12(1):174-81. doi: 10.1039/c1lc20622b. Epub 2011 Nov 8.

PMID:
22068336
18.

Stimuli-responsive microjets with reconfigurable shape.

Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG.

Angew Chem Int Ed Engl. 2014 Mar 3;53(10):2673-7. doi: 10.1002/anie.201308610. Epub 2014 Jan 30.

19.
20.

Bio-inspired cell concentration and deformability monitoring chips.

Cho YH, Youn S, Lee DW.

J Nanosci Nanotechnol. 2007 Nov;7(11):4214-9.

PMID:
18047154

Supplemental Content

Support Center