Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress.

An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, Zhang W, Miao J.

Bioresour Technol. 2013 Dec;149:77-83. doi: 10.1016/j.biortech.2013.09.027. Epub 2013 Sep 18.

PMID:
24084208
2.

Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L.

An M, Mou S, Zhang X, Ye N, Zheng Z, Cao S, Xu D, Fan X, Wang Y, Miao J.

Bioresour Technol. 2013 Apr;134:151-7. doi: 10.1016/j.biortech.2013.01.142. Epub 2013 Feb 8.

PMID:
23500572
3.

A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L.

Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X.

Mar Biotechnol (NY). 2011 Jun;13(3):393-401. doi: 10.1007/s10126-010-9309-8. Epub 2010 Jul 29.

PMID:
20668899
4.

Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress.

Salama el-S, Kim HC, Abou-Shanab RA, Ji MK, Oh YK, Kim SH, Jeon BH.

Bioprocess Biosyst Eng. 2013 Jun;36(6):827-33. doi: 10.1007/s00449-013-0919-1. Epub 2013 Feb 15.

PMID:
23411874
5.

Molecular cloning and expression analysis of glutathione reductase gene in Chlamydomonas sp. ICE-L from Antarctica.

Ding Y, Liu Y, Jian JC, Wu ZH, Miao JL.

Mar Genomics. 2012 Mar;5:59-64. doi: 10.1016/j.margen.2011.11.001. Epub 2011 Dec 6.

PMID:
22325723
6.

The effects of salinity on the growth and biochemical properties of Chlamydomonas mexicana GU732420 cultivated in municipal wastewater.

Salama el-S, Abou-Shanaba RA, Kim JR, Lee S, Kim SH, Oh SE, Kim HC, Roh HS, Jeon BH.

Environ Technol. 2014 May-Jun;35(9-12):1491-8.

PMID:
24701948
7.

microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.).

Macovei A, Tuteja N.

BMC Plant Biol. 2012 Oct 8;12:183. doi: 10.1186/1471-2229-12-183.

8.

Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes.

Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosché M, Salani F, Kuzminsky E, Auvinen P, Paulin L, Kangasjärvi J, Loreto F, Valentini R, Mugnozza GS, Sabatti M.

Tree Physiol. 2011 Dec;31(12):1335-55. doi: 10.1093/treephys/tpr083. Epub 2011 Sep 12.

PMID:
21911439
9.

Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS.

Phytochemistry. 2015 Mar;111:65-71. doi: 10.1016/j.phytochem.2014.12.022. Epub 2015 Jan 9.

PMID:
25583439
10.

Enzymatic modification by point mutation and functional analysis of an omega-6 fatty acid desaturase from Arctic Chlamydomonas sp.

Jung W, Kim EJ, Han SJ, Kang SH, Choi HG, Kim S.

Prep Biochem Biotechnol. 2017 Feb 7;47(2):143-150. doi: 10.1080/10826068.2016.1188311. Epub 2016 May 18.

PMID:
27191514
11.

Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4.

Nakanishi A, Aikawa S, Ho SH, Chen CY, Chang JS, Hasunuma T, Kondo A.

Bioresour Technol. 2014;152:247-52. doi: 10.1016/j.biortech.2013.11.009. Epub 2013 Nov 14.

PMID:
24296120
12.

Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae.

Venkata Mohan S, Devi MP.

Bioresour Technol. 2014 Aug;165:288-94. doi: 10.1016/j.biortech.2014.02.103. Epub 2014 Mar 5.

PMID:
24709529
13.

Salt stress or salt shock: which genes are we studying?

Shavrukov Y.

J Exp Bot. 2013 Jan;64(1):119-27. doi: 10.1093/jxb/ers316. Epub 2012 Nov 26. Review.

PMID:
23186621
14.

Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

Kim EJ, Jung W, Lim S, Kim S, Han SJ, Choi HG.

Bioprocess Biosyst Eng. 2016 Jan;39(1):151-7. doi: 10.1007/s00449-015-1499-z. Epub 2015 Nov 5.

PMID:
26541584
15.

Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

Liu C, Wang X, Wang X, Sun C.

Extremophiles. 2016 Jul;20(4):437-50. doi: 10.1007/s00792-016-0834-x. Epub 2016 May 9.

PMID:
27161450
16.

Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

Xu D, Wang Y, Fan X, Wang D, Ye N, Zhang X, Mou S, Guan Z, Zhuang Z.

Environ Sci Technol. 2014 Jul 15;48(14):7738-46. doi: 10.1021/es404866z. Epub 2014 Jun 20.

PMID:
24922067
17.

Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L.

Mou S, Zhang X, Ye N, Dong M, Liang C, Liang Q, Miao J, Xu D, Zheng Z.

Extremophiles. 2012 Mar;16(2):193-203. doi: 10.1007/s00792-011-0419-7. Epub 2012 Jan 3.

PMID:
22212653
18.

Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002.

Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA.

FEMS Microbiol Lett. 1997 Jul 15;152(2):313-20.

19.
20.

The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.

Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S.

Appl Microbiol Biotechnol. 2011 May;90(4):1429-41. doi: 10.1007/s00253-011-3170-1. Epub 2011 Mar 23.

PMID:
21431397

Supplemental Content

Support Center