Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase.

Nangle S, Xing W, Zheng N.

Cell Res. 2013 Dec;23(12):1417-9. doi: 10.1038/cr.2013.136. Epub 2013 Oct 1. No abstract available.

2.

SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.

Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N.

Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17.

3.

The structural basis of iron sensing by the human F-box protein FBXL5.

Shu C, Sung MW, Stewart MD, Igumenova TI, Tan X, Li P.

Chembiochem. 2012 Apr 16;13(6):788-91. doi: 10.1002/cbic.201200043. No abstract available.

4.

Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex.

Nangle SN, Rosensweig C, Koike N, Tei H, Takahashi JS, Green CB, Zheng N.

Elife. 2014 Aug 15;3:e03674. doi: 10.7554/eLife.03674.

5.

C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock.

Oshima T, Yamanaka I, Kumar A, Yamaguchi J, Nishiwaki-Ohkawa T, Muto K, Kawamura R, Hirota T, Yagita K, Irle S, Kay SA, Yoshimura T, Itami K.

Angew Chem Int Ed Engl. 2015 Jun 8;54(24):7193-7. doi: 10.1002/anie.201502942. Epub 2015 May 8.

PMID:
25960183
6.

Mechanism of auxin perception by the TIR1 ubiquitin ligase.

Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N.

Nature. 2007 Apr 5;446(7136):640-5.

PMID:
17410169
7.

CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors.

Geisselbrecht Y, Frühwirth S, Schroeder C, Pierik AJ, Klug G, Essen LO.

EMBO Rep. 2012 Mar 1;13(3):223-9. doi: 10.1038/embor.2012.2.

8.

WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins.

Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC.

Mol Cell. 2010 Nov 12;40(3):433-43. doi: 10.1016/j.molcel.2010.10.018.

9.

Dynamic determination of the functional state in photolyase and the implication for cryptochrome.

Liu Z, Zhang M, Guo X, Tan C, Li J, Wang L, Sancar A, Zhong D.

Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12972-7. doi: 10.1073/pnas.1311077110. Epub 2013 Jul 23.

10.

Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation.

Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A, Wolf E.

Cell. 2014 May 22;157(5):1203-15. doi: 10.1016/j.cell.2014.03.057.

11.

Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.

Damiani MJ, Yalloway GN, Lu J, McLeod NR, O'Neill MA.

Biochemistry. 2009 Dec 8;48(48):11399-411. doi: 10.1021/bi901371s.

PMID:
19888752
12.

Carbazole-containing sulfonamides and sulfamides: Discovery of cryptochrome modulators as antidiabetic agents.

Humphries PS, Bersot R, Kincaid J, Mabery E, McCluskie K, Park T, Renner T, Riegler E, Steinfeld T, Turtle ED, Wei ZL, Willis E.

Bioorg Med Chem Lett. 2016 Feb 1;26(3):757-760. doi: 10.1016/j.bmcl.2015.12.102. Epub 2015 Dec 30.

PMID:
26778255
13.

Crystal structure and interaction studies of the human FBxo3 ApaG domain.

Krzysiak TC, Chen BB, Lear T, Mallampalli RK, Gronenborn AM.

FEBS J. 2016 Jun;283(11):2091-101. doi: 10.1111/febs.13721. Epub 2016 Apr 22.

14.

Structural and molecular characterization of iron-sensing hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5).

Thompson JW, Salahudeen AA, Chollangi S, Ruiz JC, Brautigam CA, Makris TM, Lipscomb JD, Tomchick DR, Bruick RK.

J Biol Chem. 2012 Mar 2;287(10):7357-65. doi: 10.1074/jbc.M111.308684. Epub 2012 Jan 17.

15.

Flavin reduction activates Drosophila cryptochrome.

Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, Pollack L, Young MW, Crane BR.

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20455-60. doi: 10.1073/pnas.1313336110. Epub 2013 Dec 2.

16.

Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

Muñoz-Escobar J, Kozlov G, Gehring K.

Protein Sci. 2017 Oct;26(10):2092-2097. doi: 10.1002/pro.3227. Epub 2017 Jul 25.

17.

The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity.

Guzmán-Moreno J, Flores-Martínez A, Brieba LG, Herrera-Estrella A.

PLoS One. 2014 Jun 25;9(6):e100625. doi: 10.1371/journal.pone.0100625. eCollection 2014.

18.

Overexpression in yeast, photocycle, and in vitro structural change of an avian putative magnetoreceptor cryptochrome4.

Mitsui H, Maeda T, Yamaguchi C, Tsuji Y, Watari R, Kubo Y, Okano K, Okano T.

Biochemistry. 2015 Mar 17;54(10):1908-17. doi: 10.1021/bi501441u. Epub 2015 Mar 4.

PMID:
25689419
19.

Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.

Masiero A, Aufiero S, Minervini G, Moro S, Costa R, Tosatto SC.

Biochem Biophys Res Commun. 2014 Aug 8;450(4):1606-11. doi: 10.1016/j.bbrc.2014.07.038. Epub 2014 Jul 12.

PMID:
25026553
20.

Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.

Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J.

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12142-7. Epub 2004 Aug 6.

Supplemental Content

Support Center