Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 174

1.

Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF.

Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F.

Microb Cell Fact. 2013 Sep 30;12:86. doi: 10.1186/1475-2859-12-86.

2.

Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.

Escalante A, Calderón R, Valdivia A, de Anda R, Hernández G, Ramírez OT, Gosset G, Bolívar F.

Microb Cell Fact. 2010 Apr 12;9:21. doi: 10.1186/1475-2859-9-21.

3.

Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.

Liu DF, Ai GM, Zheng QX, Liu C, Jiang CY, Liu LX, Zhang B, Liu YM, Yang C, Liu SJ.

Microb Cell Fact. 2014 Mar 14;13(1):40. doi: 10.1186/1475-2859-13-40.

4.

Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.

Cui YY, Ling C, Zhang YY, Huang J, Liu JZ.

Microb Cell Fact. 2014 Feb 10;13:21. doi: 10.1186/1475-2859-13-21.

5.
6.

Global transcriptomic analysis of an engineered Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium.

Cortés-Tolalpa L, Gutiérrez-Ríos RM, Martínez LM, de Anda R, Gosset G, Bolívar F, Escalante A.

Microb Cell Fact. 2014 Feb 21;13(1):28. doi: 10.1186/1475-2859-13-28.

7.

Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis.

Licona-Cassani C, Lara AR, Cabrera-Valladares N, Escalante A, Hernández-Chávez G, Martinez A, Bolívar F, Gosset G.

J Mol Microbiol Biotechnol. 2014;24(1):37-45. doi: 10.1159/000355264. Epub 2013 Oct 18.

PMID:
24158146
8.

Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.

Lee MY, Hung WP, Tsai SH.

World J Microbiol Biotechnol. 2017 Feb;33(2):25. doi: 10.1007/s11274-016-2192-3. Epub 2017 Jan 2.

PMID:
28044275
9.

Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.

Liu X, Lin J, Hu H, Zhou B, Zhu B.

Enzyme Microb Technol. 2016 Jan;82:96-104. doi: 10.1016/j.enzmictec.2015.08.018. Epub 2015 Sep 2.

PMID:
26672454
10.

Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli.

Chen K, Dou J, Tang S, Yang Y, Wang H, Fang H, Zhou C.

Bioresour Technol. 2012 Sep;119:141-7. doi: 10.1016/j.biortech.2012.05.100. Epub 2012 May 29.

PMID:
22728194
11.
12.

Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions.

Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G.

Biotechnol Bioeng. 2005 Dec 5;92(5):541-52.

PMID:
16240440
13.

Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.

Rodriguez A, Martínez JA, Millard P, Gosset G, Portais JC, Létisse F, Bolivar F.

Biotechnol Bioeng. 2017 Jun;114(6):1319-1330. doi: 10.1002/bit.26264. Epub 2017 Mar 9.

PMID:
28186321
14.

[Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].

Li M, Chen X, Zhou L, Shen W, Fan Y, Wang Z.

Sheng Wu Gong Cheng Xue Bao. 2013 Jan;29(1):56-67. Chinese.

PMID:
23631118
15.

Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.

Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z.

Bioresour Technol. 2014 Aug;166:64-71. doi: 10.1016/j.biortech.2014.05.035. Epub 2014 May 21.

PMID:
24905044
16.

Metabolic engineering for microbial production of shikimic acid.

Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L.

Metab Eng. 2003 Oct;5(4):277-83. Review.

PMID:
14642355
17.

Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol.

Liu X, Lin J, Hu H, Zhou B, Zhu B.

World J Microbiol Biotechnol. 2014 Sep;30(9):2543-50. doi: 10.1007/s11274-014-1679-z. Epub 2014 Jun 4.

PMID:
24894540
18.

[Improvements of shikimic acid production in Escherichia coli with ideal metabolic modification in biosynthetic pathway--a review].

Xiao M, Zhang L, Shi G.

Wei Sheng Wu Xue Bao. 2014 Jan 4;54(1):5-13. Review. Chinese.

PMID:
24783849
19.

Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode.

Borja GM, Meza Mora E, Barrón B, Gosset G, Ramírez OT, Lara AR.

Microb Cell Fact. 2012 Sep 19;11:132. doi: 10.1186/1475-2859-11-132.

20.

Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli.

Schmitz M, Hirsch E, Bongaerts J, Takors R.

Biotechnol Prog. 2002 Sep-Oct;18(5):935-41.

PMID:
12363343

Supplemental Content

Support Center