Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems.

Zhan C, Lu J, Jeremy Kropf A, Wu T, Jansen AN, Sun YK, Qiu X, Amine K.

Nat Commun. 2013;4:2437. doi: 10.1038/ncomms3437.

PMID:
24077265
2.

Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach.

Lu J, Zhan C, Wu T, Wen J, Lei Y, Kropf AJ, Wu H, Miller DJ, Elam JW, Sun YK, Qiu X, Amine K.

Nat Commun. 2014 Dec 16;5:5693. doi: 10.1038/ncomms6693.

PMID:
25514346
3.

Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries.

Vissers DR, Chen Z, Shao Y, Engelhard M, Das U, Redfern P, Curtiss LA, Pan B, Liu J, Amine K.

ACS Appl Mater Interfaces. 2016 Jun 8;8(22):14244-51. doi: 10.1021/acsami.6b02061. Epub 2016 May 26.

PMID:
27152912
4.

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover.

Li W, Kim UH, Dolocan A, Sun YK, Manthiram A.

ACS Nano. 2017 Jun 27;11(6):5853-5863. doi: 10.1021/acsnano.7b01494. Epub 2017 May 16.

PMID:
28502161
5.

The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.

Nowak S, Winter M.

Acc Chem Res. 2018 Feb 20;51(2):265-272. doi: 10.1021/acs.accounts.7b00523. Epub 2018 Jan 30.

PMID:
29381052
6.

Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries.

Xiao X, Liu Z, Baggetto L, Veith GM, More KL, Unocic RR.

Phys Chem Chem Phys. 2014 Jun 14;16(22):10398-402. doi: 10.1039/c4cp00833b.

PMID:
24733563
7.

Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study.

Mohanty D, Sefat AS, Li J, Meisner RA, Rondinone AJ, Payzant EA, Abraham DP, Wood DL 3rd, Daniel C.

Phys Chem Chem Phys. 2013 Nov 28;15(44):19496-509. doi: 10.1039/c3cp53658k.

PMID:
24129599
8.

Two-step hydrothermal synthesis of submicron Li(1+x)Ni(0.5)Mn(1.5)O(4-δ) for lithium-ion battery cathodes (x = 0.02, δ = 0.12).

Hao X, Austin MH, Bartlett BM.

Dalton Trans. 2012 Jul 14;41(26):8067-76. doi: 10.1039/c2dt30351e. Epub 2012 May 15.

PMID:
22585259
9.

Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.

Wang C, Yin L, Xiang D, Qi Y.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1636-42. doi: 10.1021/am2017909. Epub 2012 Mar 16.

PMID:
22394097
10.

Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2.

Carroll KJ, Qian D, Fell C, Calvin S, Veith GM, Chi M, Baggetto L, Meng YS.

Phys Chem Chem Phys. 2013 Jul 14;15(26):11128-38. doi: 10.1039/c3cp51927a. Epub 2013 May 31.

PMID:
23722534
11.

Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation.

Abel PR, Lin YM, Celio H, Heller A, Mullins CB.

ACS Nano. 2012 Mar 27;6(3):2506-16. doi: 10.1021/nn204896n. Epub 2012 Mar 2.

PMID:
22372404
12.

On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

Banerjee A, Shilina Y, Ziv B, Ziegelbauer JM, Luski S, Aurbach D, Halalay IC.

J Am Chem Soc. 2017 Feb 8;139(5):1738-1741. doi: 10.1021/jacs.6b10781. Epub 2017 Jan 30.

PMID:
28122187
13.

Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

Mahmoud M, Gad-Allah TA, El-Khatib KM, El-Gohary F.

Bioresour Technol. 2011 Nov;102(22):10459-64. doi: 10.1016/j.biortech.2011.08.123. Epub 2011 Sep 5.

PMID:
21944282
14.

Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells.

Gowda SR, Gallagher KG, Croy JR, Bettge M, Thackeray MM, Balasubramanian M.

Phys Chem Chem Phys. 2014 Apr 21;16(15):6898-902. doi: 10.1039/c4cp00764f. Epub 2014 Mar 10.

PMID:
24608259
15.

Electrospun Zn(1-x)Mn(x)Fe2O4 nanofibers as anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance.

Teh PF, Pramana SS, Sharma Y, Ko YW, Madhavi S.

ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5461-7. doi: 10.1021/am400497v. Epub 2013 Jun 5.

PMID:
23688028
16.

A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries.

Zhang W, Zeng Y, Xu C, Xiao N, Gao Y, Li LJ, Chen X, Hng HH, Yan Q.

Beilstein J Nanotechnol. 2012;3:513-23. Epub 2012 Jul 17.

17.

A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries.

Kim JS, Kim K, Cho W, Shin WH, Kanno R, Choi JW.

Nano Lett. 2012 Dec 12;12(12):6358-65. doi: 10.1021/nl303619s. Epub 2012 Nov 26.

PMID:
23145851
18.

A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells.

Krämer Y, Birkenmaier C, Feinauer J, Hintennach A, Bender CL, Meiler M, Schmidt V, Dinnebier RE, Schleid T.

Chemistry. 2015 Apr 13;21(16):6062-5. doi: 10.1002/chem.201406606. Epub 2015 Mar 12.

PMID:
25765564
19.

Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.

Wang L, Deng X, Dai PX, Guo YG, Wang D, Wan LJ.

Phys Chem Chem Phys. 2012 May 28;14(20):7330-6. doi: 10.1039/c2cp40595d. Epub 2012 Apr 24.

PMID:
22526455
20.

Electrochemical analysis of the effect of Cr coating the LiV3O8 cathode in a lithium ion battery with a lithium powder anode.

Lee JH, Lee JK, Yoon WY.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7058-64. doi: 10.1021/am401334b. Epub 2013 Aug 5.

PMID:
23914998

Supplemental Content

Support Center