Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Polytypic InP nanolaser monolithically integrated on (001) silicon.

Wang Z, Tian B, Paladugu M, Pantouvaki M, Le Thomas N, Merckling C, Guo W, Dekoster J, Van Campenhout J, Absil P, Van Thourhout D.

Nano Lett. 2013 Nov 13;13(11):5063-9. doi: 10.1021/nl402145r. Epub 2013 Oct 2.

PMID:
24073748
2.

Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon.

Schuster F, Kapraun J, Malheiros-Silveira GN, Deshpande S, Chang-Hasnain CJ.

Nano Lett. 2017 Apr 12;17(4):2697-2702. doi: 10.1021/acs.nanolett.7b00607. Epub 2017 Mar 23.

3.

Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

Li K, Sun H, Ren F, Ng KW, Tran TT, Chen R, Chang-Hasnain CJ.

Nano Lett. 2014 Jan 8;14(1):183-90. doi: 10.1021/nl403712f. Epub 2013 Dec 16.

PMID:
24299042
4.

Monolithically Integrated High-β Nanowire Lasers on Silicon.

Mayer B, Janker L, Loitsch B, Treu J, Kostenbader T, Lichtmannecker S, Reichert T, Morkötter S, Kaniber M, Abstreiter G, Gies C, Koblmüller G, Finley JJ.

Nano Lett. 2016 Jan 13;16(1):152-6. doi: 10.1021/acs.nanolett.5b03404. Epub 2015 Dec 7.

PMID:
26618638
5.

High optical quality single crystal phase wurtzite and zincblende InP nanowires.

Vu TT, Zehender T, Verheijen MA, Plissard SR, Immink GW, Haverkort JE, Bakkers EP.

Nanotechnology. 2013 Mar 22;24(11):115705. doi: 10.1088/0957-4484/24/11/115705. Epub 2013 Mar 1.

PMID:
23455417
6.

Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing.

Gao Q, Saxena D, Wang F, Fu L, Mokkapati S, Guo Y, Li L, Wong-Leung J, Caroff P, Tan HH, Jagadish C.

Nano Lett. 2014 Sep 10;14(9):5206-11. doi: 10.1021/nl5021409. Epub 2014 Aug 15.

PMID:
25115241
7.

Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

Kim H, Farrell AC, Senanayake P, Lee WJ, Huffaker DL.

Nano Lett. 2016 Mar 9;16(3):1833-9. doi: 10.1021/acs.nanolett.5b04883. Epub 2016 Feb 25. Erratum in: Nano Lett. 2016 Apr 13;16(4):2896.

PMID:
26901448
8.

Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon.

Wirths S, Mayer BF, Schmid H, Sousa M, Gooth J, Riel H, Moselund KE.

ACS Nano. 2018 Jan 30. doi: 10.1021/acsnano.7b07911. [Epub ahead of print]

PMID:
29365252
9.

Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon.

Su Z, Li N, Salih Magden E, Byrd M, Purnawirman P, Adam TN, Leake G, Coolbaugh D, Bradley JD, Watts MR.

Opt Lett. 2016 Dec 15;41(24):5708-5711. doi: 10.1364/OL.41.005708.

PMID:
27973495
10.

Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit.

Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli JM, Lagahe C, Baets R.

Opt Express. 2007 May 28;15(11):6744-9.

PMID:
19546984
11.

Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI.

Mechet P, Raineri F, Bazin A, Halioua Y, Spuesens T, Karle TJ, Regreny P, Monnier P, Van Thourhout D, Sagnes I, Raj R, Roelkens G, Morthier G.

Opt Express. 2013 May 6;21(9):10622-31. doi: 10.1364/OE.21.010622.

PMID:
23669918
12.

Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.

Kim G, Park JW, Kim IG, Kim S, Kim S, Lee JM, Park GS, Joo J, Jang KS, Oh JH, Kim SA, Kim JH, Lee JY, Park JM, Kim DW, Jeong DK, Hwang MS, Kim JK, Park KS, Chi HK, Kim HC, Kim DW, Cho MH.

Opt Express. 2011 Dec 19;19(27):26936-47. doi: 10.1364/OE.19.026936.

PMID:
22274277
13.

Growth of InAs/InP core-shell nanowires with various pure crystal structures.

Gorji Ghalamestani S, Heurlin M, Wernersson LE, Lehmann S, Dick KA.

Nanotechnology. 2012 Jul 20;23(28):285601. doi: 10.1088/0957-4484/23/28/285601. Epub 2012 Jun 21.

PMID:
22717421
14.

Elastic and piezoelectric properties of zincblende and wurtzite crystalline nanowire heterostructures.

Boxberg F, Søndergaard N, Xu HQ.

Adv Mater. 2012 Sep 4;24(34):4692-706. doi: 10.1002/adma.201200370. Epub 2012 May 18. Review.

PMID:
22605617
15.

High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology.

Tanaka S, Jeong SH, Sekiguchi S, Kurahashi T, Tanaka Y, Morito K.

Opt Express. 2012 Dec 17;20(27):28057-69. doi: 10.1364/OE.20.028057.

PMID:
23263042
16.

Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires.

Wallentin J, Ek M, Wallenberg LR, Samuelson L, Deppert K, Borgström MT.

Nano Lett. 2010 Dec 8;10(12):4807-12. doi: 10.1021/nl101747z. Epub 2010 Nov 2.

PMID:
21043510
17.

Continuous wave blue lasing in III-nitride nanobeam cavity on silicon.

Triviño NV, Butté R, Carlin JF, Grandjean N.

Nano Lett. 2015 Feb 11;15(2):1259-63. doi: 10.1021/nl504432d. Epub 2015 Jan 20.

PMID:
25584901
18.

Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

Wang Y, Jackson HE, Smith LM, Burgess T, Paiman S, Gao Q, Tan HH, Jagadish C.

Nano Lett. 2014 Dec 10;14(12):7153-60. doi: 10.1021/nl503747h. Epub 2014 Nov 18.

PMID:
25382815
19.
20.

Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

Kriegner D, Wintersberger E, Kawaguchi K, Wallentin J, Borgström MT, Stangl J.

Nanotechnology. 2011 Oct 21;22(42):425704. doi: 10.1088/0957-4484/22/42/425704. Epub 2011 Sep 22.

PMID:
21937785

Supplemental Content

Support Center