Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Investigation of the open-circuit voltage in solar cells doped with quantum dots.

Tayagaki T, Hoshi Y, Usami N.

Sci Rep. 2013 Sep 26;3:2703. doi: 10.1038/srep02703.

2.

Silicon quantum dot/crystalline silicon solar cells.

Cho EC, Park S, Hao X, Song D, Conibeer G, Park SC, Green MA.

Nanotechnology. 2008 Jun 18;19(24):245201. doi: 10.1088/0957-4484/19/24/245201. Epub 2008 May 9.

PMID:
21825804
3.

Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.

Saha SK, Bera A, Pal AJ.

ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8886-93. doi: 10.1021/acsami.5b01521. Epub 2015 Apr 16.

PMID:
25853277
4.

Complete voltage recovery in quantum dot solar cells due to suppression of electron capture.

Varghese A, Yakimov M, Tokranov V, Mitin V, Sablon K, Sergeev A, Oktyabrsky S.

Nanoscale. 2016 Apr 7;8(13):7248-56. doi: 10.1039/c5nr07774e. Epub 2016 Mar 14.

PMID:
26974517
5.

Recombination in quantum dot sensitized solar cells.

Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J.

Acc Chem Res. 2009 Nov 17;42(11):1848-57. doi: 10.1021/ar900134d.

PMID:
19722527
6.

Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells.

Yoon W, Boercker JE, Lumb MP, Placencia D, Foos EE, Tischler JG.

Sci Rep. 2013;3:2225. doi: 10.1038/srep02225.

7.

CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage.

Panthani MG, Stolle CJ, Reid DK, Rhee DJ, Harvey TB, Akhavan VA, Yu Y, Korgel BA.

J Phys Chem Lett. 2013 Jun 20;4(12):2030-4. doi: 10.1021/jz4010015. Epub 2013 Jun 5.

PMID:
26283248
8.

Energetics and carrier transport in doped Si/SiO2 quantum dots.

Garcia-Castello N, Illera S, Prades JD, Ossicini S, Cirera A, Guerra R.

Nanoscale. 2015 Aug 7;7(29):12564-71. doi: 10.1039/c5nr02616d. Epub 2015 Jul 6.

9.

Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.

Lim S, Kim Y, Lee J, Han CJ, Kang J, Kim J.

J Nanosci Nanotechnol. 2014 Dec;14(12):9346-50.

PMID:
25971063
10.

Critical interfaces in organic solar cells and their influence on the open-circuit voltage.

Potscavage WJ Jr, Sharma A, Kippelen B.

Acc Chem Res. 2009 Nov 17;42(11):1758-67. doi: 10.1021/ar900139v.

PMID:
19708653
11.

Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells.

Chuang CH, Maurano A, Brandt RE, Hwang GW, Jean J, Buonassisi T, Bulović V, Bawendi MG.

Nano Lett. 2015 May 13;15(5):3286-94. doi: 10.1021/acs.nanolett.5b00513. Epub 2015 Apr 30.

12.

Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.

Di D, Perez-Wurfl I, Gentle A, Kim DH, Hao X, Shi L, Conibeer G, Green MA.

Nanoscale Res Lett. 2010 Aug 1;5(11):1762-1767.

13.

Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.

Jumabekov AN, Cordes N, Siegler TD, Docampo P, Ivanova A, Fominykh K, Medina DD, Peter LM, Bein T.

ACS Appl Mater Interfaces. 2016 Feb;8(7):4600-7. doi: 10.1021/acsami.5b10953. Epub 2016 Feb 15.

PMID:
26771519
14.

Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

Rajagopal A, Yang Z, Jo SB, Braly IL, Liang PW, Hillhouse HW, Jen AK.

Adv Mater. 2017 Sep;29(34). doi: 10.1002/adma.201702140. Epub 2017 Jul 10.

PMID:
28692764
15.

Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots.

Yuan X, Zheng J, Zeng R, Jing P, Ji W, Zhao J, Yang W, Li H.

Nanoscale. 2014 Jan 7;6(1):300-7. doi: 10.1039/c3nr04319c. Epub 2013 Nov 5.

PMID:
24192996
16.

Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

Ten Cate S, Sandeep CS, Liu Y, Law M, Kinge S, Houtepen AJ, Schins JM, Siebbeles LD.

Acc Chem Res. 2015 Feb 17;48(2):174-81. doi: 10.1021/ar500248g. Epub 2015 Jan 21.

PMID:
25607377
17.

Si solid-state quantum dot-based materials for tandem solar cells.

Conibeer G, Perez-Wurfl I, Hao X, Di D, Lin D.

Nanoscale Res Lett. 2012 Mar 21;7:193. doi: 10.1186/1556-276X-7-193.

18.

PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.

Zhang J, Gao J, Church CP, Miller EM, Luther JM, Klimov VI, Beard MC.

Nano Lett. 2014 Oct 8;14(10):6010-5. doi: 10.1021/nl503085v. Epub 2014 Sep 19.

PMID:
25203870
19.

Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application.

Kim JS, Kim WJ, Cho N, Shukla S, Yoon H, Jang J, Prasad PN, Kim TD, Lee KS.

J Nanosci Nanotechnol. 2009 Dec;9(12):6957-61.

PMID:
19908706
20.

Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.

Peng W, Du J, Pan Z, Nakazawa N, Sun J, Du Z, Shen G, Yu J, Hu JS, Shen Q, Zhong X.

ACS Appl Mater Interfaces. 2017 Feb 15;9(6):5328-5336. doi: 10.1021/acsami.6b14649. Epub 2017 Jan 31.

PMID:
28092935

Supplemental Content

Support Center