Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices.

Dungchai W, Sameenoi Y, Chailapakul O, Volckens J, Henry CS.

Analyst. 2013 Nov 21;138(22):6766-73. doi: 10.1039/c3an01235b.

2.

Microfluidic paper-based analytical device for aerosol oxidative activity.

Sameenoi Y, Panymeesamer P, Supalakorn N, Koehler K, Chailapakul O, Henry CS, Volckens J.

Environ Sci Technol. 2013 Jan 15;47(2):932-40. doi: 10.1021/es304662w. Epub 2012 Dec 21.

3.

Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

Sameenoi Y, Koehler K, Shapiro J, Boonsong K, Sun Y, Collett J Jr, Volckens J, Henry CS.

J Am Chem Soc. 2012 Jun 27;134(25):10562-8. doi: 10.1021/ja3031104. Epub 2012 Jun 15.

4.

LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

Koehler K, Shapiro J, Sameenoi Y, Henry C, Volckens J.

Aerosol Sci Technol. 2014 May 1;48(5):489-497.

5.

Oxidative potential of particulate matter collected at sites with different source characteristics.

Janssen NA, Yang A, Strak M, Steenhof M, Hellack B, Gerlofs-Nijland ME, Kuhlbusch T, Kelly F, Harrison R, Brunekreef B, Hoek G, Cassee F.

Sci Total Environ. 2014 Feb 15;472:572-81. doi: 10.1016/j.scitotenv.2013.11.099. Epub 2013 Dec 6.

6.

A new rapid colorimetric detection method of Al³⁺ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles.

Yang N, Gao Y, Zhang Y, Shen Z, Wu A.

Talanta. 2014 May;122:272-7. doi: 10.1016/j.talanta.2014.01.035. Epub 2014 Jan 31.

PMID:
24720995
7.

Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles.

Ulm L, Krivohlavek A, Jurašin D, Ljubojević M, Šinko G, Crnković T, Žuntar I, Šikić S, Vinković Vrček I.

Environ Sci Pollut Res Int. 2015 Dec;22(24):19990-9. doi: 10.1007/s11356-015-5201-4. Epub 2015 Aug 23.

PMID:
26296504
8.

Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols.

Verma V, Rico-Martinez R, Kotra N, King L, Liu J, Snell TW, Weber RJ.

Environ Sci Technol. 2012 Oct 16;46(20):11384-92. doi: 10.1021/es302484r. Epub 2012 Sep 25.

PMID:
22974103
9.

Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings.

Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C.

Environ Sci Technol. 2014 Jul 1;48(13):7576-83. doi: 10.1021/es500937x. Epub 2014 Jun 10.

PMID:
24873754
10.

Oxidation of c60 aerosols by atmospherically relevant levels of o3.

Tiwari AJ, Morris JR, Vejerano EP, Hochella MF Jr, Marr LC.

Environ Sci Technol. 2014;48(5):2706-14. doi: 10.1021/es4045693. Epub 2014 Feb 20.

PMID:
24517376
11.

Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity.

Garg S, Rong H, Miller CJ, Waite TD.

Environ Sci Technol. 2016 Apr 5;50(7):3890-6. doi: 10.1021/acs.est.6b00037. Epub 2016 Mar 25.

12.

Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach.

Zhou H, Wang X, Zhou Y, Yao H, Ahmad F.

Anal Bioanal Chem. 2014 Jun;406(15):3689-95. doi: 10.1007/s00216-014-7773-0. Epub 2014 Apr 22.

PMID:
24752692
13.

Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza.

Jiang HS, Qiu XN, Li GB, Li W, Yin LY.

Environ Toxicol Chem. 2014 Jun;33(6):1398-405. doi: 10.1002/etc.2577. Epub 2014 Apr 16. Erratum in: Environ Toxicol Chem. 2014 Aug;33(8):1914.

PMID:
24619507
14.

Redox activity of airborne particulate matter at different sites in the Los Angeles Basin.

Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR.

Environ Res. 2005 Sep;99(1):40-7.

PMID:
16053926
15.

Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures.

Raemy DO, Grass RN, Stark WJ, Schumacher CM, Clift MJ, Gehr P, Rothen-Rutishauser B.

Part Fibre Toxicol. 2012 Aug 17;9:33. doi: 10.1186/1743-8977-9-33.

16.

Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

Ahmad A, Qureshi AS, Li L, Bao J, Jia X, Xu Y, Guo X.

Colloids Surf B Biointerfaces. 2016 Jul 1;143:490-8. doi: 10.1016/j.colsurfb.2016.03.065. Epub 2016 Mar 23.

PMID:
27038914
17.

Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.

He D, Dorantes-Aranda JJ, Waite TD.

Environ Sci Technol. 2012 Aug 21;46(16):8731-8. doi: 10.1021/es300588a. Epub 2012 Jul 31.

PMID:
22816991
18.

Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols.

Lin P, Yu JZ.

Environ Sci Technol. 2011 Dec 15;45(24):10362-8. doi: 10.1021/es2028229. Epub 2011 Nov 15.

PMID:
22044074
19.

Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress.

Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G.

Small. 2013 May 27;9(9-10):1831-41. doi: 10.1002/smll.201202732. Epub 2013 Feb 20.

PMID:
23427069
20.

Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level.

Craig RL, Bondy AL, Ault AP.

Anal Chem. 2015 Aug 4;87(15):7510-4. doi: 10.1021/acs.analchem.5b01507. Epub 2015 Jul 23.

PMID:
26176648

Supplemental Content

Support Center