Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer.

Zhang C, Zhang Z, Zhu Y, Qin S.

Anticancer Agents Med Chem. 2014 Feb;14(2):280-9. Review.

PMID:
24066844
2.

Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.

Torres-Ramírez N, Baiza-Gutman LA, García-Macedo R, Ortega-Camarillo C, Contreras-Ramos A, Medina-Navarro R, Cruz M, Ibáñez-Hernández MÁ, Díaz-Flores M.

Life Sci. 2013 Dec 18;93(25-26):975-85. doi: 10.1016/j.lfs.2013.10.023. Epub 2013 Nov 1.

PMID:
24184296
3.

The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate.

Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D.

Free Radic Biol Med. 2012 Aug 1;53(3):421-36. doi: 10.1016/j.freeradbiomed.2012.05.006. Epub 2012 May 11. Review.

PMID:
22580150
4.

Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose.

Zhang Z, Yang Z, Zhu B, Hu J, Liew CW, Zhang Y, Leopold JA, Handy DE, Loscalzo J, Stanton RC.

PLoS One. 2012;7(11):e49128. doi: 10.1371/journal.pone.0049128. Epub 2012 Nov 19.

5.

O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth.

Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, Wang Y, Shen B, Yi W.

Nat Commun. 2015 Sep 24;6:8468. doi: 10.1038/ncomms9468.

6.

Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells.

Fang Z, Jiang C, Feng Y, Chen R, Lin X, Zhang Z, Han L, Chen X, Li H, Guo Y, Jiang W.

Biochim Biophys Acta. 2016 Sep;1863(9):2245-54. doi: 10.1016/j.bbamcr.2016.05.016. Epub 2016 May 20.

7.

Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.

Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R.

Circ Res. 2003 Jul 25;93(2):e9-16. Epub 2003 Jun 26.

8.

Computational determination of binding structures and free energies of glucose 6-phosphate dehydrogenase with novel steroid inhibitors.

Zhao ZB, Liu Y, Yao Y.

J Mol Graph Model. 2014 Jun;51:168-72. doi: 10.1016/j.jmgm.2014.05.009. Epub 2014 Jun 2.

PMID:
24929815
9.

Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti D, Giglio A, Serino G, Vavallo A, Bettocchi C, Selvaggi FP, Battaglia M, Ditonno P.

Oncotarget. 2015 May 30;6(15):13371-86.

10.

Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.

Frederiks WM, Vizan P, Bosch KS, Vreeling-Sindelárová H, Boren J, Cascante M.

Int J Exp Pathol. 2008 Aug;89(4):232-40. doi: 10.1111/j.1365-2613.2008.00582.x. Epub 2008 Apr 17.

11.

Glucose-6-phosphate dehydrogenase (G6PD)-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus.

Hsieh YT, Lin MH, Ho HY, Chen LC, Chen CC, Shu JC.

PLoS One. 2013 Nov 4;8(11):e79566. doi: 10.1371/journal.pone.0079566. eCollection 2013.

12.

Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth.

Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE.

Oncogenesis. 2014 May 26;3:e103. doi: 10.1038/oncsis.2014.18.

13.

Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation.

Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, Schirmer WJ.

Cancer Res. 1997 Oct 1;57(19):4242-8.

14.

Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress.

Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, Kozuka C, Sears DD, Masuzaki H, Kim JB.

Mol Cell Biol. 2013 Jun;33(12):2425-35. doi: 10.1128/MCB.01260-12. Epub 2013 Apr 9.

15.
16.

Metabolic genes in cancer: their roles in tumor progression and clinical implications.

Furuta E, Okuda H, Kobayashi A, Watabe K.

Biochim Biophys Acta. 2010 Apr;1805(2):141-52. doi: 10.1016/j.bbcan.2010.01.005. Epub 2010 Feb 1. Review.

17.

p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase.

Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X.

Nat Cell Biol. 2011 Mar;13(3):310-6. doi: 10.1038/ncb2172. Epub 2011 Feb 20.

18.

Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells.

Comin-Anduix B, Boros LG, Marin S, Boren J, Callol-Massot C, Centelles JJ, Torres JL, Agell N, Bassilian S, Cascante M.

J Biol Chem. 2002 Nov 29;277(48):46408-14. Epub 2002 Sep 25.

19.
20.

Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.

Ho HY, Cheng ML, Shiao MS, Chiu DT.

Free Radic Biol Med. 2013 Jan;54:71-84. doi: 10.1016/j.freeradbiomed.2012.10.557. Epub 2012 Nov 6.

PMID:
23142419

Supplemental Content

Support Center