Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Self-assembly of C4H-type hydrogenated graphene.

Liu Z, Xue Q, Xing W, Du Y, Han Z.

Nanoscale. 2013 Nov 21;5(22):11132-8. doi: 10.1039/c3nr03558a. Epub 2013 Sep 24.

PMID:
24064528
2.

Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights.

Liu Z, Xue Q, Tao Y, Li X, Wu T, Jin Y, Zhang Z.

Phys Chem Chem Phys. 2015 Feb 7;17(5):3441-50. doi: 10.1039/c4cp04102j. Epub 2014 Dec 22.

PMID:
25531924
3.

Fabrication of carbon nanoscrolls from monolayer graphene.

Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, Dong M.

Small. 2010 Sep 20;6(18):2010-9. doi: 10.1002/smll.201000646.

PMID:
20715074
4.

Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls.

Jin Y, Xue Q, Zhu L, Li X, Pan X, Zhang J, Xing W, Wu T, Liu Z.

Sci Rep. 2016 May 31;6:26914. doi: 10.1038/srep26914.

5.

Mechanical behaviors of carbon nanoscrolls.

Wang T, Zhang C, Chen S.

J Nanosci Nanotechnol. 2013 Feb;13(2):1136-40.

PMID:
23646588
6.

Atomistic insights into the nanohelix of hydrogenated graphene: formation, characterization and application.

Zhang L, Wang X.

Phys Chem Chem Phys. 2014 Feb 21;16(7):2981-8. doi: 10.1039/c3cp53978d.

PMID:
24390310
7.

Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC.

Phys Chem Chem Phys. 2011 Oct 21;13(39):17615-24. doi: 10.1039/c1cp21910c. Epub 2011 Sep 1.

PMID:
21887427
8.

An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks.

Shin YE, Sa YJ, Park S, Lee J, Shin KH, Joo SH, Ko H.

Nanoscale. 2014 Aug 21;6(16):9734-41. doi: 10.1039/c4nr01988a. Epub 2014 Jul 7.

PMID:
24998618
9.

XH/π (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures.

Li Y, Chen Z.

J Phys Chem Lett. 2013 Jan 17;4(2):269-75. doi: 10.1021/jz301821n. Epub 2012 Dec 31.

PMID:
26283433
10.

The mechanism of transforming diamond nanowires to carbon nanostructures.

Sorkin A, Su H.

Nanotechnology. 2014 Jan 24;25(3):035601. doi: 10.1088/0957-4484/25/3/035601. Epub 2013 Dec 17.

PMID:
24346378
11.

Functionalization of graphene for efficient energy conversion and storage.

Dai L.

Acc Chem Res. 2013 Jan 15;46(1):31-42. doi: 10.1021/ar300122m. Epub 2012 Oct 3.

PMID:
23030244
12.

Supercapacitors based on pillared graphene nanostructures.

Lin J, Zhong J, Bao D, Reiber-Kyle J, Wang W, Vullev V, Ozkan M, Ozkan CS.

J Nanosci Nanotechnol. 2012 Mar;12(3):1770-5.

PMID:
22754980
13.

Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review.

Page AJ, Ding F, Irle S, Morokuma K.

Rep Prog Phys. 2015 Feb;78(3):036501. doi: 10.1088/0034-4885/78/3/036501. Epub 2015 Mar 9.

PMID:
25746411
14.

Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

Liu M, Miao YE, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T.

Nanoscale. 2013 Aug 21;5(16):7312-20. doi: 10.1039/c3nr01442h.

PMID:
23821299
15.

Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

Jin Y, Chen H, Chen M, Liu N, Li Q.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3408-16. doi: 10.1021/am400457x. Epub 2013 Apr 5.

PMID:
23488813
16.

Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.

Zhao MQ, Liu XF, Zhang Q, Tian GL, Huang JQ, Zhu W, Wei F.

ACS Nano. 2012 Dec 21;6(12):10759-69. doi: 10.1021/nn304037d. Epub 2012 Nov 21.

PMID:
23153374
17.

Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.

Chen S, Chen P, Wang Y.

Nanoscale. 2011 Oct 5;3(10):4323-9. doi: 10.1039/c1nr10642b. Epub 2011 Aug 30.

PMID:
21879120
18.

Out-of-plane growth of CNTs on graphene for supercapacitor applications.

Kim YS, Kumar K, Fisher FT, Yang EH.

Nanotechnology. 2012 Jan 13;23(1):015301. doi: 10.1088/0957-4484/23/1/015301. Epub 2011 Dec 8.

PMID:
22155846
19.

Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.

Paul RK, Ghazinejad M, Penchev M, Lin J, Ozkan M, Ozkan CS.

Small. 2010 Oct 18;6(20):2309-13. doi: 10.1002/smll.201000525.

PMID:
20862676
20.

Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

Wan X, Huang Y, Chen Y.

Acc Chem Res. 2012 Apr 17;45(4):598-607. doi: 10.1021/ar200229q. Epub 2012 Jan 26.

PMID:
22280410

Supplemental Content

Support Center