Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.).

Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, Schillinger WF, Paulitz TC.

Appl Environ Microbiol. 2013 Dec;79(23):7428-38. doi: 10.1128/AEM.01610-13. Epub 2013 Sep 20.

2.

Agroecological factors correlated to soil DNA concentrations of Rhizoctonia in dryland wheat production zones of Washington state, USA.

Okubara PA, Schroeder KL, Abatzoglou JT, Paulitz TC.

Phytopathology. 2014 Jul;104(7):683-91. doi: 10.1094/PHYTO-09-13-0269-R.

3.

Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani.

Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK.

J Basic Microbiol. 2014 Jun;54(6):585-97. doi: 10.1002/jobm.201200564. Epub 2013 May 20.

PMID:
23686438
4.

Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction.

Okubara PA, Schroeder KL, Paulitz TC.

Phytopathology. 2008 Jul;98(7):837-47. doi: 10.1094/PHYTO-98-7-0837.

5.

Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.

Jaaffar AKM, Parejko JA, Paulitz TC, Weller DM, Thomashow LS.

Phytopathology. 2017 Jun;107(6):692-703. doi: 10.1094/PHYTO-07-16-0257-R. Epub 2017 Apr 4.

PMID:
28383281
6.

Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons.

Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J, Firestone M.

MBio. 2015 Aug 4;6(4):e00746. doi: 10.1128/mBio.00746-15.

7.

Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae.

Okubara PA, Steber CM, Demacon VL, Walter NL, Paulitz TC, Kidwell KK.

Theor Appl Genet. 2009 Jul;119(2):293-303. doi: 10.1007/s00122-009-1038-x. Epub 2009 May 1.

PMID:
19407984
8.

Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat.

Sachdev D, Nema P, Dhakephalkar P, Zinjarde S, Chopade B.

Microbiol Res. 2010 Oct 20;165(8):627-38. doi: 10.1016/j.micres.2009.12.002. Epub 2010 Feb 8.

9.

Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation.

Kang SM, Radhakrishnan R, Lee IJ.

World J Microbiol Biotechnol. 2015 Oct;31(10):1517-27. doi: 10.1007/s11274-015-1896-0. Epub 2015 Jul 10.

PMID:
26160009
10.

In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response.

Adesina MF, Grosch R, Lembke A, Vatchev TD, Smalla K.

FEMS Microbiol Ecol. 2009 Jul;69(1):62-74. doi: 10.1111/j.1574-6941.2009.00685.x. Epub 2009 May 22.

11.

Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara.

Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A.

Microbiol Res. 2014 Jan 20;169(1):59-65. doi: 10.1016/j.micres.2013.06.014. Epub 2013 Aug 3.

12.

Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State.

Jaaffar AK, Paulitz TC, Schroeder KL, Thomashow LS, Weller DM.

Phytopathology. 2016 May;106(5):459-73. doi: 10.1094/PHYTO-09-15-0208-R. Epub 2016 Mar 21.

13.

Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.

Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang HT, Weller DM, Guo JH.

Phytopathology. 2011 Dec;101(12):1481-91. doi: 10.1094/PHYTO-04-11-0096.

14.

Changes in populations of rhizosphere bacteria associated with take-all disease of wheat.

McSpadden Gardener BB, Weller DM.

Appl Environ Microbiol. 2001 Oct;67(10):4414-25.

15.

Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management.

Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BB, Kinkel LL, Garrett KA.

Phytopathology. 2016 Oct;106(10):1083-1096. Epub 2016 Sep 8.

16.

Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.

Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, Moënne-Loccoz Y.

ISME J. 2009 Oct;3(10):1127-38. doi: 10.1038/ismej.2009.61. Epub 2009 Jun 25.

PMID:
19554036
17.

The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing.

Romero FM, Marina M, Pieckenstain FL.

FEMS Microbiol Lett. 2014 Feb;351(2):187-94. doi: 10.1111/1574-6968.12377. Epub 2014 Feb 3.

18.

Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.

Fischer SE, Jofré EC, Cordero PV, Gutiérrez Mañero FJ, Mori GB.

Antonie Van Leeuwenhoek. 2010 Mar;97(3):241-51. doi: 10.1007/s10482-009-9405-9. Epub 2009 Dec 19.

PMID:
20020326
19.

Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

Vega-Avila AD, Gumiere T, Andrade PA, Lima-Perim JE, Durrer A, Baigori M, Vazquez F, Andreote FD.

Antonie Van Leeuwenhoek. 2015 Feb;107(2):575-88. doi: 10.1007/s10482-014-0353-7. Epub 2014 Dec 20.

PMID:
25527391
20.

Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J.

Microb Biotechnol. 2015 May;8(3):404-18. doi: 10.1111/1751-7915.12158. Epub 2014 Sep 15.

Supplemental Content

Support Center