Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

Gan L, Zhang CY, Wang XD, Wang H, Long Y, Yin YT, Li DR, Tian JH, Li ZY, Lin ZW, Yu LJ, Li MT.

J Proteome Res. 2013 Nov 1;12(11):4965-78. doi: 10.1021/pr4005635. Epub 2013 Sep 23.

PMID:
24053668
2.

Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C.

J Exp Bot. 2012 Jul;63(12):4447-61. doi: 10.1093/jxb/ers125. Epub 2012 May 4.

PMID:
22563121
3.

Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.).

Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L.

Theor Appl Genet. 2012 Feb;124(3):515-31. doi: 10.1007/s00122-011-1725-2. Epub 2011 Nov 1.

PMID:
22042481
4.

QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition.

Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ.

Heredity (Edinb). 2003 Jan;90(1):39-48.

5.

Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus.

Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J.

Theor Appl Genet. 2012 Feb;124(2):407-21. doi: 10.1007/s00122-011-1716-3. Epub 2011 Oct 13.

PMID:
21993634
6.

Differential proteomic analysis of four near-isogenic Brassica napus varieties bred for their erucic acid and glucosinolate contents.

Devouge V, Rogniaux H, Nési N, Tessier D, Guéguen J, Larré C.

J Proteome Res. 2007 Apr;6(4):1342-53. Epub 2007 Feb 17.

PMID:
17305382
7.

Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus.

Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J.

J Genet Genomics. 2010 Apr;37(4):231-40. doi: 10.1016/S1673-8527(09)60041-2.

PMID:
20439099
8.

Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J.

Theor Appl Genet. 2014 Apr;127(4):957-68. doi: 10.1007/s00122-014-2271-5. Epub 2014 Feb 7.

PMID:
24504552
9.

Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping.

Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J.

Genome. 2010 Nov;53(11):908-16. doi: 10.1139/G10-075.

PMID:
21076506
10.

The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ.

J Exp Bot. 2012 Jun;63(10):3727-40. doi: 10.1093/jxb/ers066. Epub 2012 Mar 21.

11.

Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

Chen S, Ding G, Wang Z, Cai H, Xu F.

J Proteomics. 2015 Mar 18;117:106-19. doi: 10.1016/j.jprot.2015.01.012. Epub 2015 Jan 30.

PMID:
25644742
12.

Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus.

Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H.

Plant Physiol Biochem. 2010 Jan;48(1):9-15. doi: 10.1016/j.plaphy.2009.09.007. Epub 2009 Oct 1.

PMID:
19828328
13.

The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus.

Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I.

Theor Appl Genet. 2011 Apr;122(6):1075-90. doi: 10.1007/s00122-010-1512-5. Epub 2010 Dec 24.

PMID:
21184048
14.

Oil body biogenesis during Brassica napus embryogenesis.

He YQ, Wu Y.

J Integr Plant Biol. 2009 Aug;51(8):792-9. doi: 10.1111/j.1744-7909.2009.00851.x.

PMID:
19686376
15.

Protein composition of oil bodies from mature Brassica napus seeds.

Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d'Andréa S, Chardot T, Nesi N.

Proteomics. 2009 Jun;9(12):3268-84. doi: 10.1002/pmic.200800449.

PMID:
19562800
16.

Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds.

Niu Y, Rogiewicz A, Wan C, Guo M, Huang F, Slominski BA.

J Agric Food Chem. 2015 Apr 1;63(12):3078-84. doi: 10.1021/jf504872x. Epub 2015 Mar 20.

PMID:
25765856
17.

Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.

Nesi N, Delourme R, Brégeon M, Falentin C, Renard M.

C R Biol. 2008 Oct;331(10):763-71. doi: 10.1016/j.crvi.2008.07.018. Epub 2008 Sep 4. Review.

PMID:
18926490
18.

Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar.

Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H.

PLoS One. 2012;7(10):e47037. doi: 10.1371/journal.pone.0047037. Epub 2012 Oct 12.

19.

Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars.

Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ.

Proteomics. 2006 Aug;6(16):4586-98.

PMID:
16847873
20.

A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.

Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y.

Theor Appl Genet. 2016 Jun;129(6):1203-15. doi: 10.1007/s00122-016-2697-z. Epub 2016 Feb 25.

PMID:
26912143

Supplemental Content

Support Center