Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer.

Jia J, Parikh H, Xiao W, Hoskins JW, Pflicke H, Liu X, Collins I, Zhou W, Wang Z, Powell J, Thorgeirsson SS, Rudloff U, Petersen GM, Amundadottir LT.

BMC Med Genomics. 2013 Sep 22;6:33. doi: 10.1186/1755-8794-6-33.

2.

Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway.

Shao C, Sullivan JP, Girard L, Augustyn A, Yenerall P, Rodriguez-Canales J, Liu H, Behrens C, Shay JW, Wistuba II, Minna JD.

Clin Cancer Res. 2014 Aug 1;20(15):4154-66. doi: 10.1158/1078-0432.CCR-13-3292. Epub 2014 Jun 6.

3.

Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development.

Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J, Zhou J, Wu J, Shao C.

Carcinogenesis. 2011 Aug;32(8):1183-9. doi: 10.1093/carcin/bgr105. Epub 2011 Jun 10.

PMID:
21665894
4.

Integrative genomic and functional profiling of the pancreatic cancer genome.

Shain AH, Salari K, Giacomini CP, Pollack JR.

BMC Genomics. 2013 Sep 16;14:624. doi: 10.1186/1471-2164-14-624.

5.

ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion.

Zhang W, Liu Y, Hu H, Huang H, Bao Z, Yang P, Wang Y, You G, Yan W, Jiang T, Wang J, Zhang W.

PLoS One. 2015 Nov 17;10(11):e0142856. doi: 10.1371/journal.pone.0142856. eCollection 2015.

6.
7.

The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer.

He H, Di Y, Liang M, Yang F, Yao L, Hao S, Li J, Jiang Y, Jin C, Fu D.

Oncol Rep. 2013 Aug;30(2):651-8. doi: 10.3892/or.2013.2516. Epub 2013 Jun 3.

PMID:
23733161
8.

Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling.

Marcato P, Dean CA, Liu RZ, Coyle KM, Bydoun M, Wallace M, Clements D, Turner C, Mathenge EG, Gujar SA, Giacomantonio CA, Mackey JR, Godbout R, Lee PW.

Mol Oncol. 2015 Jan;9(1):17-31. doi: 10.1016/j.molonc.2014.07.010. Epub 2014 Jul 24.

9.

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH.

Cancer Res. 2003 Dec 15;63(24):8614-22.

10.

Differentially expressed microRNAs in pancreatic cancer stem cells.

Jung DE, Wen J, Oh T, Song SY.

Pancreas. 2011 Nov;40(8):1180-7. doi: 10.1097/MPA.0b013e318221b33e.

PMID:
21785383
11.

Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells.

Xu Q, Fu R, Yin G, Liu X, Liu Y, Xiang M.

Gene. 2016 Mar 10;578(2):263-73. doi: 10.1016/j.gene.2015.12.039. Epub 2015 Dec 21.

PMID:
26719042
12.

Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis.

Missiaglia E, Blaveri E, Terris B, Wang YH, Costello E, Neoptolemos JP, Crnogorac-Jurcevic T, Lemoine NR.

Int J Cancer. 2004 Oct 20;112(1):100-12.

13.

Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma.

Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, Zhang S, Ray A, Perera RJ.

PLoS One. 2011;6(9):e24922. doi: 10.1371/journal.pone.0024922. Epub 2011 Sep 19.

14.

Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells.

Stephens B, Han H, Hostetter G, Demeure MJ, Von Hoff DD.

Mol Cancer Ther. 2008 Jan;7(1):202-10. doi: 10.1158/1535-7163.MCT-07-0542. Epub 2008 Jan 9.

15.

[Increased expression of acetaldehyde dehydrogenase in cisplatin-resistant human lung adenocarcinoma A549/DDP cells].

He J, Song X, Yu L, Li J, Qiao Z, Jiu R, Yu B, Liu X.

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015 May;31(5):625-9. Chinese.

PMID:
25940289
16.

Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types.

Fu B, Guo M, Wang S, Campagna D, Luo M, Herman JG, Iacobuzio-Donahue CA.

Cancer Biol Ther. 2007 Oct;6(10):1546-52. Epub 2007 Jul 7.

PMID:
17912029
17.

Increased expression of keratinocyte growth factor in human pancreatic cancer.

Siddiqi I, Funatomi H, Kobrin MS, Friess H, Büchler MW, Korc M.

Biochem Biophys Res Commun. 1995 Oct 4;215(1):309-15.

PMID:
7575607
18.

Development of a novel approach, the epigenome-based outlier approach, to identify tumor-suppressor genes silenced by aberrant DNA methylation.

Kikuyama M, Takeshima H, Kinoshita T, Okochi-Takada E, Wakabayashi M, Akashi-Tanaka S, Ogawa T, Seto Y, Ushijima T.

Cancer Lett. 2012 Sep 28;322(2):204-12. doi: 10.1016/j.canlet.2012.03.016. Epub 2012 Mar 17.

PMID:
22433712
19.

MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer.

Jiang J, Li Z, Yu C, Chen M, Tian S, Sun C.

Cancer Lett. 2015 Jan 28;356(2 Pt B):962-70. doi: 10.1016/j.canlet.2014.11.007. Epub 2014 Nov 10.

PMID:
25444909
20.

Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer.

Li J, Kleeff J, Abiatari I, Kayed H, Giese NA, Felix K, Giese T, Büchler MW, Friess H.

Mol Cancer. 2005 Apr 7;4(1):14.

Supplemental Content

Support Center