Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Role of the C-terminal domain in the structure and function of tetrameric sodium channels.

Bagnéris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, Wallace BA.

Nat Commun. 2013;4:2465. doi: 10.1038/ncomms3465.

2.

Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.

Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8428-33. doi: 10.1073/pnas.1406855111. Epub 2014 May 21.

3.

Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing.

McCusker EC, Bagnéris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA.

Nat Commun. 2012;3:1102. doi: 10.1038/ncomms2077.

4.

Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels.

Bagnéris C, Naylor CE, McCusker EC, Wallace BA.

J Gen Physiol. 2015 Jan;145(1):5-16. doi: 10.1085/jgp.201411242. Epub 2014 Dec 15. Review.

5.

Structure of the C-terminal domain of the prokaryotic sodium channel orthologue NsvBa.

Miller WC, Miles AJ, Wallace BA.

Eur Biophys J. 2016 Dec;45(8):807-814. Epub 2016 Apr 22.

PMID:
27106836
6.

Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

Arrigoni C, Rohaim A, Shaya D, Findeisen F, Stein RA, Nurva SR, Mishra S, Mchaourab HS, Minor DL Jr.

Cell. 2016 Feb 25;164(5):922-36. doi: 10.1016/j.cell.2016.02.001.

7.

Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.

Clayton GM, Altieri S, Heginbotham L, Unger VM, Morais-Cabral JH.

Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1511-5. doi: 10.1073/pnas.0711533105. Epub 2008 Jan 23.

8.

The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate.

Irie K, Shimomura T, Fujiyoshi Y.

Nat Commun. 2012 Apr 24;3:793. doi: 10.1038/ncomms1797.

9.

Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel.

Ulmschneider MB, Bagnéris C, McCusker EC, Decaen PG, Delling M, Clapham DE, Ulmschneider JP, Wallace BA.

Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6364-9. doi: 10.1073/pnas.1214667110. Epub 2013 Mar 29.

10.

A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP.

Akimoto M, Zhang Z, Boulton S, Selvaratnam R, VanSchouwen B, Gloyd M, Accili EA, Lange OF, Melacini G.

J Biol Chem. 2014 Aug 8;289(32):22205-20. doi: 10.1074/jbc.M114.572164. Epub 2014 May 30.

11.

Emerging issues of connexin channels: biophysics fills the gap.

Harris AL.

Q Rev Biophys. 2001 Aug;34(3):325-472. Review. Erratum in: Q Rev Biophys 2002 Feb;35(1):109.

PMID:
11838236
12.

Structure of membrane-active toxin from crab spider Heriaeus melloteei suggests parallel evolution of sodium channel gating modifiers in Araneomorphae and Mygalomorphae.

Berkut AA, Peigneur S, Myshkin MY, Paramonov AS, Lyukmanova EN, Arseniev AS, Grishin EV, Tytgat J, Shenkarev ZO, Vassilevski AA.

J Biol Chem. 2015 Jan 2;290(1):492-504. doi: 10.1074/jbc.M114.595678. Epub 2014 Oct 28.

13.

Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL Jr.

J Mol Biol. 2014 Jan 23;426(2):467-83. doi: 10.1016/j.jmb.2013.10.010. Epub 2013 Oct 10.

14.

Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel.

Barber AF, Carnevale V, Raju SG, Amaral C, Treptow W, Klein ML.

Biochim Biophys Acta. 2012 Sep;1818(9):2120-5. doi: 10.1016/j.bbamem.2012.05.002. Epub 2012 May 9.

15.

Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted.

Löwe J, Cordell SC, van den Ent F.

J Mol Biol. 2001 Feb 9;306(1):25-35.

PMID:
11178891
16.

Two alternative conformations of a voltage-gated sodium channel.

Tsai CJ, Tani K, Irie K, Hiroaki Y, Shimomura T, McMillan DG, Cook GM, Schertler GF, Fujiyoshi Y, Li XD.

J Mol Biol. 2013 Nov 15;425(22):4074-88. doi: 10.1016/j.jmb.2013.06.036. Epub 2013 Jul 2.

17.

Distinct gating mechanisms revealed by the structures of a multi-ligand gated K(+) channel.

Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, Jiang Y.

Elife. 2012 Dec 13;1:e00184. doi: 10.7554/eLife.00184.

18.

Molecular basis of ion permeability in a voltage-gated sodium channel.

Naylor CE, Bagnéris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA.

EMBO J. 2016 Apr 15;35(8):820-30. doi: 10.15252/embj.201593285. Epub 2016 Feb 12.

19.

Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana.

Halavaty AS, Moffat K.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1316-21. doi: 10.1107/S1744309113029199. Epub 2013 Nov 28.

20.

Molecular determinants of gating at the potassium-channel selectivity filter.

Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E.

Nat Struct Mol Biol. 2006 Apr;13(4):311-8. Epub 2006 Mar 12.

PMID:
16532009

Supplemental Content

Support Center