Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation.

Venables JP, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre JM, Tazi J.

Nat Commun. 2013;4:2480. doi: 10.1038/ncomms3480.

PMID:
24048253
2.

MBNL proteins repress ES-cell-specific alternative splicing and reprogramming.

Han H, Irimia M, Ross PJ, Sung HK, Alipanahi B, David L, Golipour A, Gabut M, Michael IP, Nachman EN, Wang E, Trcka D, Thompson T, O'Hanlon D, Slobodeniuc V, Barbosa-Morais NL, Burge CB, Moffat J, Frey BJ, Nagy A, Ellis J, Wrana JL, Blencowe BJ.

Nature. 2013 Jun 13;498(7453):241-5. doi: 10.1038/nature12270. Epub 2013 Jun 5.

3.

Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins.

Cieply B, Park JW, Nakauka-Ddamba A, Bebee TW, Guo Y, Shang X, Lengner CJ, Xing Y, Carstens RP.

Cell Rep. 2016 Apr 12;15(2):247-55. doi: 10.1016/j.celrep.2016.03.025. Epub 2016 Mar 31.

4.

[Alternative splicing regulation during somatic cell reprogramming].

Ohta S, Yamamoto T.

Seikagaku. 2014 Dec;86(6):807-11. Review. Japanese. No abstract available.

PMID:
25675823
5.

RBFOX2 protein domains and cellular activities.

Arya AD, Wilson DI, Baralle D, Raponi M.

Biochem Soc Trans. 2014 Aug;42(4):1180-3. doi: 10.1042/BST20140050. Review.

PMID:
25110022
6.

Rbfox2 controls autoregulation in RNA-binding protein networks.

Jangi M, Boutz PL, Paul P, Sharp PA.

Genes Dev. 2014 Mar 15;28(6):637-51. doi: 10.1101/gad.235770.113.

7.

Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming.

Liu Z, Skamagki M, Kim K, Zhao R.

Stem Cell Reports. 2015 Dec 8;5(6):1119-27. doi: 10.1016/j.stemcr.2015.11.002.

8.

Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming.

Hirsch CL, Coban Akdemir Z, Wang L, Jayakumaran G, Trcka D, Weiss A, Hernandez JJ, Pan Q, Han H, Xu X, Xia Z, Salinger AP, Wilson M, Vizeacoumar F, Datti A, Li W, Cooney AJ, Barton MC, Blencowe BJ, Wrana JL, Dent SY.

Genes Dev. 2015 Apr 15;29(8):803-16. doi: 10.1101/gad.255109.114. Epub 2015 Apr 15. Erratum in: Genes Dev. 2015 Jun 15;29(12):1341.

9.

Global splicing pattern reversion during somatic cell reprogramming.

Ohta S, Nishida E, Yamanaka S, Yamamoto T.

Cell Rep. 2013 Oct 31;5(2):357-66. doi: 10.1016/j.celrep.2013.09.016. Epub 2013 Oct 17.

10.

Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

Khazaie N, Massumi M, Wee P, Salimi M, Mohammadnia A, Yaqubi M.

PLoS One. 2016 Mar 3;11(3):e0150518. doi: 10.1371/journal.pone.0150518. eCollection 2016 Mar 3.

11.

Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes.

Kim JS, Choi HW, Choi S, Seo HG, Moon SH, Chung HM, Do JT.

Stem Cells Dev. 2014 Nov 1;23(21):2637-48. doi: 10.1089/scd.2014.0020. Epub 2014 Aug 20.

12.

RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues.

Venables JP, Brosseau JP, Gadea G, Klinck R, Prinos P, Beaulieu JF, Lapointe E, Durand M, Thibault P, Tremblay K, Rousset F, Tazi J, Abou Elela S, Chabot B.

Mol Cell Biol. 2013 Jan;33(2):396-405. doi: 10.1128/MCB.01174-12. Epub 2012 Nov 12.

13.

Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses.

Park SJ, Yeo HC, Kang NY, Kim H, Lin J, Ha HH, Vendrell M, Lee JS, Chandran Y, Lee DY, Yun SW, Chang YT.

Stem Cell Res. 2014 May;12(3):730-41. doi: 10.1016/j.scr.2014.03.002. Epub 2014 Mar 25.

14.

FoxO3a contributes to the reprogramming process and the differentiation of induced pluripotent stem cells.

Wang Y, Tian C, Zheng JC.

Stem Cells Dev. 2013 Nov 15;22(22):2954-63. doi: 10.1089/scd.2013.0044. Epub 2013 Aug 9.

15.

Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming.

Sakurai K, Talukdar I, Patil VS, Dang J, Li Z, Chang KY, Lu CC, Delorme-Walker V, Dermardirossian C, Anderson K, Hanein D, Yang CS, Wu D, Liu Y, Rana TM.

Cell Stem Cell. 2014 Apr 3;14(4):523-34. doi: 10.1016/j.stem.2014.03.001.

16.

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.

Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, Carey M, Garcia BA, Plath K.

Nat Cell Biol. 2013 Jul;15(7):872-82. doi: 10.1038/ncb2768. Epub 2013 Jun 9.

17.

A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming.

Chan YS, Göke J, Lu X, Venkatesan N, Feng B, Su IH, Ng HH.

Stem Cells. 2013 Apr;31(4):682-92. doi: 10.1002/stem.1307.

18.

ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells.

Jung L, Tropel P, Moal Y, Teletin M, Jeandidier E, Gayon R, Himmelspach C, Bello F, André C, Tosch A, Mansouri A, Bruant-Rodier C, Bouillé P, Viville S.

Mol Hum Reprod. 2014 Jun;20(6):538-49. doi: 10.1093/molehr/gau012. Epub 2014 Feb 5.

PMID:
24501429
19.

Alternative splicing regulates pluripotent state in pluripotent stem cells.

He L, Bai Q, Tang L.

Curr Stem Cell Res Ther. 2015;10(2):159-65. Review.

PMID:
25391379
20.

Nanog-independent reprogramming to iPSCs with canonical factors.

Carter AC, Davis-Dusenbery BN, Koszka K, Ichida JK, Eggan K.

Stem Cell Reports. 2014 Jan 31;2(2):119-26. doi: 10.1016/j.stemcr.2013.12.010. eCollection 2014 Jan 31.

Supplemental Content

Support Center