Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

Kim OH, Cho YH, Kang SH, Park HY, Kim M, Lim JW, Chung DY, Lee MJ, Choe H, Sung YE.

Nat Commun. 2013;4:2473. doi: 10.1038/ncomms3473.

PMID:
24048197
2.

Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template.

Song YY, Zhang D, Gao W, Xia XH.

Chemistry. 2005 Mar 18;11(7):2177-82.

PMID:
15714534
3.

Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.

Fang B, Kim JH, Kim MS, Yu JS.

Acc Chem Res. 2013 Jul 16;46(7):1397-406. doi: 10.1021/ar300253f. Epub 2012 Dec 27.

PMID:
23270494
4.

Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor.

Li J, Zhao X, Wei H, Gu ZZ, Lu Z.

Anal Chim Acta. 2008 Sep 5;625(1):63-9. doi: 10.1016/j.aca.2008.07.008. Epub 2008 Jul 16.

PMID:
18721541
5.

Inverse opal carbons for counter electrode of dye-sensitized solar cells.

Kang DY, Lee Y, Cho CY, Moon JH.

Langmuir. 2012 May 1;28(17):7033-8. doi: 10.1021/la300644j. Epub 2012 Apr 17.

PMID:
22475456
6.

Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications.

Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY.

J Phys Chem B. 2005 Nov 3;109(43):20200-6.

PMID:
16853611
7.

The electrodeposition of zinc oxide two-dimensional nanomesh and three-dimensional inverse opal complex connected structures.

Fu M, Zhou J, Huang X, He D, Wang Y.

J Nanosci Nanotechnol. 2010 Mar;10(3):1928-33.

PMID:
20355602
8.

Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates.

Lee S, Teshima K, Fujisawa M, Fujii S, Endo M, Oishi S.

Phys Chem Chem Phys. 2009 May 21;11(19):3628-33. doi: 10.1039/b821209k. Epub 2009 Mar 20.

PMID:
19421472
9.

2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

Collins G, Armstrong E, McNulty D, O'Hanlon S, Geaney H, O'Dwyer C.

Sci Technol Adv Mater. 2016 Sep 16;17(1):563-582. eCollection 2016.

10.

Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal.

Mandlmeier B, Szeifert JM, Fattakhova-Rohlfing D, Amenitsch H, Bein T.

J Am Chem Soc. 2011 Nov 2;133(43):17274-82. doi: 10.1021/ja204667e. Epub 2011 Oct 5.

PMID:
21888389
11.

Preparation of photolithographically patterned inverse opal hydrogel microstructures and its application to protein patterning.

Lee Y, Park S, Han SW, Lim TG, Koh WG.

Biosens Bioelectron. 2012 May 15;35(1):243-50. doi: 10.1016/j.bios.2012.02.056. Epub 2012 Mar 3.

PMID:
22444515
12.

Macroporous Inverse Opal-like MoxC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution.

Li F, Zhao X, Mahmood J, Okyay MS, Jung SM, Ahmad I, Kim SJ, Han GF, Park N, Baek JB.

ACS Nano. 2017 Jul 25;11(7):7527-7533. doi: 10.1021/acsnano.7b04205. Epub 2017 Jul 13.

PMID:
28692795
13.

Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.

Lee JW, Moon JH.

Nanoscale. 2015 Mar 12;7(12):5164-8. doi: 10.1039/c4nr06859a.

PMID:
25634556
14.

Modulating light propagation in ZnO-Cuâ‚‚O-inverse opal solar cells for enhanced photocurrents.

Yantara N, Pham TT, Boix PP, Mathews N.

Phys Chem Chem Phys. 2015 Sep 7;17(33):21694-701. doi: 10.1039/c5cp02041g. Epub 2015 Aug 3.

PMID:
26235838
15.

Enhanced photoluminescence of ordered macroporous germanium electrochemically prepared from ionic liquids.

Meng X, Zhao J, Li H, Endres F, Li Y.

Opt Express. 2012 Apr 23;20(9):9421-30. doi: 10.1364/OE.20.009421.

PMID:
22535032
16.

Two substrate-confined sol-gel coassembled ordered macroporous silica structures with an open surface.

Guo W, Wang M, Xia W, Dai L.

Langmuir. 2013 May 21;29(20):5944-51. doi: 10.1021/la304268b. Epub 2013 May 7.

PMID:
23614663
17.

Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode.

Moir J, Soheilnia N, O'Brien P, Jelle A, Grozea CM, Faulkner D, Helander MG, Ozin GA.

ACS Nano. 2013 May 28;7(5):4261-74. doi: 10.1021/nn400744d. Epub 2013 Apr 18.

PMID:
23581965
18.

Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

Lee CH, Lee SY, Lee YM, McGrath JE.

Langmuir. 2009 Jul 21;25(14):8217-25. doi: 10.1021/la900406d.

PMID:
19485372
19.

Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells.

Cho CY, Kim HN, Moon JH.

Phys Chem Chem Phys. 2013 Jul 14;15(26):10835-40. doi: 10.1039/c3cp50214g. Epub 2013 May 22.

PMID:
23698158
20.

Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells.

Shin JH, Kang JH, Jin WM, Park JH, Cho YS, Moon JH.

Langmuir. 2011 Jan 18;27(2):856-60. doi: 10.1021/la104512c. Epub 2010 Dec 14.

PMID:
21155579

Supplemental Content

Support Center