Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 269

1.

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting.

Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS.

Sci Rep. 2013;3:2681. doi: 10.1038/srep02681.

2.

Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.

Wang D, Chen H, Chang G, Lin X, Zhang Y, Aldalbahi A, Peng C, Wang J, Fan C.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14072-8. doi: 10.1021/acsami.5b03298.

PMID:
26052922
3.

Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.

Li X, Bassi PS, Boix PP, Fang Y, Wong LH.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16960-6. doi: 10.1021/acsami.5b01394.

PMID:
26192330
4.

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4284-90. doi: 10.1039/c3cp54240h.

PMID:
24451918
5.

Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS.

ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19428-37. doi: 10.1021/acsami.6b04528.

PMID:
27420603
6.

Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

Kim do H, Andoshe DM, Shim YS, Moon CW, Sohn W, Choi S, Kim TL, Lee M, Park H, Hong K, Kwon KC, Suh JM, Kim JS, Lee JH, Jang HW.

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23793-800. doi: 10.1021/acsami.6b05366.

PMID:
27551887
7.

A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.

Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW.

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24053-62. doi: 10.1021/acsami.5b07065.

PMID:
26488924
8.

Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.

Gurudayal, Chee PM, Boix PP, Ge H, Yanan F, Barber J, Wong LH.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6852-9. doi: 10.1021/acsami.5b00417.

PMID:
25790720
9.

Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.

Li C, Wang T, Luo Z, Liu S, Gong J.

Small. 2016 Jul;12(25):3415-22. doi: 10.1002/smll.201600940.

PMID:
27197643
10.
11.

Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.

Ling Y, Wang G, Wang H, Yang Y, Li Y.

ChemSusChem. 2014 Mar;7(3):848-53. doi: 10.1002/cssc.201301013.

PMID:
24493003
12.

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS.

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

13.

Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.

Kim ES, Kang HJ, Magesh G, Kim JY, Jang JW, Lee JS.

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17762-9. doi: 10.1021/am504283t.

PMID:
25232699
14.

Microwave-assisted fabrication of porous hematite photoanodes for efficient solar water splitting.

Hou Y, Zheng C, Zhu Z, Wang X.

Chem Commun (Camb). 2016 May 25;52(42):6888-91. doi: 10.1039/c6cc02404a.

PMID:
27140504
15.

Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.

Wang P, Wang D, Lin J, Li X, Peng C, Gao X, Huang Q, Wang J, Xu H, Fan C.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2295-302. doi: 10.1021/am300395p.

PMID:
22452535
16.

Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.

Nano Lett. 2011 Jul 13;11(7):3026-33. doi: 10.1021/nl201766h.

PMID:
21710974
17.

Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting.

Peerakiatkhajohn P, Yun JH, Chen H, Lyu M, Butburee T, Wang L.

Adv Mater. 2016 Aug;28(30):6405-10. doi: 10.1002/adma.201601525.

PMID:
27167876
18.

Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.

Shi X, Zhang K, Shin K, Moon JH, Lee TW, Park JH.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11717-22. doi: 10.1039/c3cp50459j.

PMID:
23752489
19.

Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.

Ji M, Cai J, Ma Y, Qi L.

ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3651-60. doi: 10.1021/acsami.5b08116.

PMID:
26517010
20.

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

Steier L, Luo J, Schreier M, Mayer MT, Sajavaara T, Gr├Ątzel M.

ACS Nano. 2015 Dec 22;9(12):11775-83. doi: 10.1021/acsnano.5b03694.

PMID:
26516784
Items per page

Supplemental Content

Support Center