Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Apparent mtDNA sequence heterogeneity in single human blood CD34+ cells is markedly affected by storage and transport.

Yao YG, Kajigaya S, Samsel L, McCoy JP Jr, Torelli G, Young NS.

Mutat Res. 2013 Nov-Dec;751-752:36-41. doi: 10.1016/j.mrfmmm.2013.09.001. Epub 2013 Sep 14.

2.

Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion Following Bone Fracture.

Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, Ii M, Akimaru H, Kuroda T, Horii M, Yokoyama A, Alev C, Kuroda R, Kurosaka M, Asahara T.

Cell Transplant. 2015;24(7):1379-93. doi: 10.3727/096368914X681586. Epub 2014 May 2.

PMID:
24800622
3.

Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: effects of aging and family genetic background.

Yao YG, Kajigaya S, Feng X, Samsel L, McCoy JP Jr, Torelli G, Young NS.

Stem Cell Res. 2013 May;10(3):361-70. doi: 10.1016/j.scr.2013.01.006. Epub 2013 Jan 29.

4.

Mitochondrial DNA mutations in single human blood cells.

Yao YG, Kajigaya S, Young NS.

Mutat Res. 2015 Sep;779:68-77. doi: 10.1016/j.mrfmmm.2015.06.009. Epub 2015 Jun 22. Review.

PMID:
26149767
5.

Mitochondrial DNA sequence heterogeneity in circulating normal human CD34 cells and granulocytes.

Shin MG, Kajigaya S, Tarnowka M, McCoy JP Jr, Levin BC, Young NS.

Blood. 2004 Jun 15;103(12):4466-77. Epub 2004 Mar 11.

6.

Marked mitochondrial DNA sequence heterogeneity in single CD34+ cell clones from normal adult bone marrow.

Shin MG, Kajigaya S, McCoy JP Jr, Levin BC, Young NS.

Blood. 2004 Jan 15;103(2):553-61. Epub 2003 Sep 22.

7.

Mitochondrial DNA sequence heterogeneity of single CD34+ cells after nonmyeloablative allogeneic stem cell transplantation.

Yao YG, Childs RW, Kajigaya S, McCoy JP Jr, Young NS.

Stem Cells. 2007 Oct;25(10):2670-6. Epub 2007 Jul 12.

8.

Mitochondrial DNA spectra of single human CD34+ cells, T cells, B cells, and granulocytes.

Ogasawara Y, Nakayama K, Tarnowka M, McCoy JP Jr, Kajigaya S, Levin BC, Young NS.

Blood. 2005 Nov 1;106(9):3271-84. Epub 2005 Jul 14.

9.

No discrepancy between in vivo gene marking efficiency assessed in peripheral blood populations compared with bone marrow progenitors or CD34+ cells.

Sellers SE, Tisdale JF, Bodine DM, Williams DA, Karlsson S, Meztger M, Donahue RE, Dunbar CE.

Hum Gene Ther. 1999 Mar 1;10(4):633-40.

PMID:
10094206
10.

Protective role of functionalized single walled carbon nanotubes enhance ex vivo expansion of hematopoietic stem and progenitor cells in human umbilical cord blood.

Bari S, Chu PP, Lim A, Fan X, Gay FP, Bunte RM, Lim TK, Li S, Chiu GN, Hwang WY.

Nanomedicine. 2013 Nov;9(8):1304-16. doi: 10.1016/j.nano.2013.05.009. Epub 2013 Jun 1.

PMID:
23732300
11.

[Expansion of erythroid progenitors and CD34+ cells by umbilical cord blood mononuclear cells].

Zhang JX, Mao P.

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2005 Jun;13(3):429-33. Chinese.

PMID:
15972135
12.

Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis.

Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, Kubo S, Kawamoto A, Asahara T, Kurosaka M, Kuroda R.

Stem Cells. 2008 Mar;26(3):819-30. doi: 10.1634/stemcells.2007-0671. Epub 2008 Jan 10.

13.

Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of multiple myeloma patients: positive selection and transplantation of enriched CD34+ cells to remove circulating tumor cells.

Lemoli RM, Fortuna A, Motta MR, Rizzi S, Giudice V, Nannetti A, Martinelli G, Cavo M, Amabile M, Mangianti S, Fogli M, Conte R, Tura S.

Blood. 1996 Feb 15;87(4):1625-34.

14.

Ex vivo expansion of megakaryocyte progenitors: effect of various growth factor combinations on CD34+ progenitor cells from bone marrow and G-CSF-mobilized peripheral blood.

Gehling UM, Ryder JW, Hogan CJ, Hami L, McNiece I, Franklin W, Williams S, Helm K, King J, Shpall EJ.

Exp Hematol. 1997 Oct;25(11):1125-39.

PMID:
9328449
15.

[Factors impacting yield of CD34(+) cells from healthy donors mobilized with rhG-CSF].

Zhu L, Zhou LK, Xue M, Yan HM, Liu J, Wang ZD, Ding L, Wang HX.

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009 Dec;17(6):1541-5. Chinese.

PMID:
20030943
16.

Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor.

Lemoli RM, Tafuri A, Fortuna A, Petrucci MT, Ricciardi MR, Catani L, Rondelli D, Fogli M, Leopardi G, Ariola C, Tura S.

Blood. 1997 Feb 15;89(4):1189-96.

17.

Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo.

Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, Wagner DC, Kamprad M, Stahl T.

Cell Transplant. 2012;21(4):723-37. doi: 10.3727/096368911X586783. Epub 2011 Sep 16.

PMID:
21929866
18.

Plerixafor plus granulocyte colony-stimulating factor versus placebo plus granulocyte colony-stimulating factor for mobilization of CD34(+) hematopoietic stem cells in patients with multiple myeloma and low peripheral blood CD34(+) cell count: results of a subset analysis of a randomized trial.

Nademanee AP, DiPersio JF, Maziarz RT, Stadtmauer EA, Micallef IN, Stiff PJ, Hsu FJ, Bridger G, Bolwell BJ.

Biol Blood Marrow Transplant. 2012 Oct;18(10):1564-72. doi: 10.1016/j.bbmt.2012.05.017. Epub 2012 Jun 6.

19.
20.

Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis.

Murray LJ, Luens KM, Estrada MF, Bruno E, Hoffman R, Cohen RL, Ashby MA, Vadhan-Raj S.

Exp Hematol. 1998 Mar;26(3):207-16.

PMID:
9502616

Supplemental Content

Support Center