Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells.

Turner PJ, Buckler KJ.

J Physiol. 2013 Dec 1;591(23):5977-98. doi: 10.1113/jphysiol.2013.262022. Epub 2013 Sep 16.

2.

Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.

Kim D, Cavanaugh EJ, Kim I, Carroll JL.

J Physiol. 2009 Jun 15;587(Pt 12):2963-75. doi: 10.1113/jphysiol.2009.171181. Epub 2009 Apr 29.

3.
4.

Biophysical properties and metabolic regulation of a TASK-like potassium channel in rat carotid body type 1 cells.

Williams BA, Buckler KJ.

Am J Physiol Lung Cell Mol Physiol. 2004 Jan;286(1):L221-30. Epub 2003 Sep 22.

5.

A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing.

Trapp S, Aller MI, Wisden W, Gourine AV.

J Neurosci. 2008 Aug 27;28(35):8844-50. doi: 10.1523/JNEUROSCI.1810-08.2008.

6.

The role of TASK-like K+ channels in oxygen sensing in the carotid body.

Buckler KJ, Williams BA, Orozco RV, Wyatt CN.

Novartis Found Symp. 2006;272:73-85; discussion 85-94, 131-40. Review.

PMID:
16686430
7.
8.

TASK-like potassium channels and oxygen sensing in the carotid body.

Buckler KJ.

Respir Physiol Neurobiol. 2007 Jul 1;157(1):55-64. Epub 2007 Feb 20. Review.

PMID:
17416212
9.
10.
12.

Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells.

Ortiz FC, Varas R.

Brain Res. 2010 Apr 6;1323:74-83. doi: 10.1016/j.brainres.2010.01.091. Epub 2010 Feb 11.

PMID:
20153302
13.

Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.

Kummer W, Yamamoto Y.

Microsc Res Tech. 2002 Nov 1;59(3):234-42. Review.

PMID:
12384967
14.

Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body.

Kang D, Wang J, Hogan JO, Vennekens R, Freichel M, White C, Kim D.

J Physiol. 2014 May 1;592(9):1975-92. doi: 10.1113/jphysiol.2013.266957. Epub 2014 Mar 3.

15.

Ion channel regulation by the LKB1-AMPK signalling pathway: the key to carotid body activation by hypoxia and metabolic homeostasis at the whole body level.

Evans AM, Peers C, Wyatt CN, Kumar P, Hardie DG.

Adv Exp Med Biol. 2012;758:81-90. doi: 10.1007/978-94-007-4584-1_11. Review.

PMID:
23080146
16.
17.

Characterization of four types of background potassium channels in rat cerebellar granule neurons.

Han J, Truell J, Gnatenco C, Kim D.

J Physiol. 2002 Jul 15;542(Pt 2):431-44.

18.

TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.

Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA.

J Neurosci. 2007 Dec 19;27(51):14049-58.

19.

Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.

Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM.

Circ Res. 2007 Nov 9;101(10):1009-19. Epub 2007 Sep 13.

20.

TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing.

Buckler KJ.

Pflugers Arch. 2015 May;467(5):1013-25. doi: 10.1007/s00424-015-1689-1. Epub 2015 Jan 28. Review.

Supplemental Content

Support Center