Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102


VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.

Costa KC, Lie TJ, Xia Q, Leigh JA.

J Bacteriol. 2013 Nov;195(22):5160-5. doi: 10.1128/JB.00895-13.


Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.

Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107.


Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.

Lupa B, Hendrickson EL, Leigh JA, Whitman WB.

Appl Environ Microbiol. 2008 Nov;74(21):6584-90. doi: 10.1128/AEM.01455-08.


H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.

Costa KC, Lie TJ, Jacobs MA, Leigh JA.

MBio. 2013 Feb 26;4(2). pii: e00062-13. doi: 10.1128/mBio.00062-13.


Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.

Sattler C, Wolf S, Fersch J, Goetz S, Rother M.

Mol Genet Genomics. 2013 Sep;288(9):413-24. doi: 10.1007/s00438-013-0756-6.


Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.

Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM.

ISME J. 2014 Aug;8(8):1673-81. doi: 10.1038/ismej.2014.82.


Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.

Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA.

J Bacteriol. 2013 Apr;195(7):1456-62. doi: 10.1128/JB.02141-12.


Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.

Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15473-8.


Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus.

Belay N, Sparling R, Daniels L.

Appl Environ Microbiol. 1986 Nov;52(5):1080-5.


Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.

Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4.


Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.

Liu P, Yang Y, Lü Z, Lu Y.

Appl Environ Microbiol. 2014 Aug;80(15):4668-76.


Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

Deutzmann JS, Sahin M, Spormann AM.

MBio. 2015 Apr 21;6(2). pii: e00496-15. doi: 10.1128/mBio.00496-15.


The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity.

Soboh B, Pinske C, Kuhns M, Waclawek M, Ihling C, Trchounian K, Trchounian A, Sinz A, Sawers G.

BMC Microbiol. 2011 Aug 1;11:173. doi: 10.1186/1471-2180-11-173.


Localization of the enzymes involved in H2 and formate metabolism in Syntrophospora bryantii.

Dong X, Stams AJ.

Antonie Van Leeuwenhoek. 1995;67(4):345-50.


Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus.

Mander GJ, Pierik AJ, Huber H, Hedderich R.

Eur J Biochem. 2004 Mar;271(6):1106-16.


Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.

Meyer B, Kuehl J, Deutschbauer AM, Price MN, Arkin AP, Stahl DA.

J Bacteriol. 2013 Mar;195(5):990-1004. doi: 10.1128/JB.01959-12.


Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis.

Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA.

BMC Microbiol. 2009 Jul 23;9:149. doi: 10.1186/1471-2180-9-149.

Items per page

Supplemental Content

Support Center