Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 197

1.

Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration.

Ribeiro-Samy S, Silva NA, Correlo VM, Fraga JS, Pinto L, Teixeira-Castro A, Leite-Almeida H, Almeida A, Gimble JM, Sousa N, Salgado AJ, Reis RL.

Macromol Biosci. 2013 Nov;13(11):1576-92. doi: 10.1002/mabi.201300178.

PMID:
24038969
2.

Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.

Zonari A, Novikoff S, Electo NR, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL, Goes AM.

PLoS One. 2012;7(4):e35422. doi: 10.1371/journal.pone.0035422.

3.

Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.

Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S.

Colloids Surf B Biointerfaces. 2012 Dec 1;100:169-76. doi: 10.1016/j.colsurfb.2012.04.046.

PMID:
22766294
4.

The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P.

Biofabrication. 2013 Dec;5(4):045004. doi: 10.1088/1758-5082/5/4/045004.

PMID:
24192056
5.

Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.

Ramier J, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Renard E, Albanese P, Grande D.

Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:161-9. doi: 10.1016/j.msec.2014.01.046.

PMID:
24656364
6.

Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair.

Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN.

Biomaterials. 2008 Mar;29(9):1198-206.

PMID:
18083223
7.

[Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury].

Wang D, Wen Y, Lan X, Li H.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010 Feb;24(2):190-6. Chinese.

PMID:
20187451
8.

[Biocompatibility of electrospun poly(3-hydroxybutyrate) and its composites scaffolds for tissue engineering].

Zharkova II, Staroverova OV, Voinova VV, Andreeva NV, Shushckevich AM, Sklyanchuk ED, Kuzmicheva GM, Bespalova AE, Akulina EA, Shaitan KV, Okhlov AA.

Biomed Khim. 2014 Sep-Oct;60(5):553-60. Russian.

PMID:
25386884
9.

Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?

Masaeli E, Morshed M, Rasekhian P, Karbasi S, Karbalaie K, Karamali F, Abedi D, Razavi S, Jafarian-Dehkordi A, Nasr-Esfahani MH, Baharvand H.

J Biomed Mater Res A. 2012 Jul;100(7):1907-18. doi: 10.1002/jbm.a.34131.

PMID:
22492575
10.

SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.

Kubinová Š, Horák D, Hejčl A, Plichta Z, Kotek J, Proks V, Forostyak S, Syková E.

J Tissue Eng Regen Med. 2015 Nov;9(11):1298-309. doi: 10.1002/term.1694.

PMID:
23401421
11.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685.

12.

Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D.

J Neurol Sci. 2013 Feb 15;325(1-2):127-36. doi: 10.1016/j.jns.2012.11.022.

PMID:
23317924
13.

A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

McHugh KJ, Tao SL, Saint-Geniez M.

J Mater Sci Mater Med. 2013 Jul;24(7):1659-70. doi: 10.1007/s10856-013-4934-1.

14.

Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.

Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B.

PLoS One. 2015 Mar 24;10(3):e0117709. doi: 10.1371/journal.pone.0117709.

15.

[Effects of bone marrow mesenchymal stem cells with acellular muscle bioscaffolds on repair of acute hemi-transection spinal cord injury in rats].

Wei X, Wen Y, Zhang T, Li H.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012 Nov;26(11):1362-8. Chinese.

PMID:
23230674
16.

Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.

Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z.

Int J Nanomedicine. 2011;6:3065-75. doi: 10.2147/IJN.S25297.

17.

Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines.

Thapsukhon B, Daranarong D, Meepowpan P, Suree N, Molloy R, Inthanon K, Wongkham W, Punyodom W.

J Biomater Sci Polym Ed. 2014 Jul;25(10):1028-44. doi: 10.1080/09205063.2014.918457.

PMID:
24856087
18.

Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering.

Zhu C, Fan D, Wang Y.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:393-401. doi: 10.1016/j.msec.2013.09.044.

PMID:
24268274
19.

Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.

Ke Y, Wang YJ, Ren L, Zhao QC, Huang W.

Acta Biomater. 2010 Apr;6(4):1329-36. doi: 10.1016/j.actbio.2009.10.026.

PMID:
19853067
Items per page

Supplemental Content

Support Center