Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.
2.

Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated Lewis pairs--metal hydrides functioning as FLP bases.

Jiang Y, Blacque O, Fox T, Berke H.

J Am Chem Soc. 2013 May 22;135(20):7751-60. doi: 10.1021/ja402381d. Epub 2013 May 8.

PMID:
23617739
3.

Microfluidic studies of CO2 sequestration by frustrated Lewis pairs.

Voicu D, Abolhasani M, Choueiri R, Lestari G, Seiler C, Menard G, Greener J, Guenther A, Stephan DW, Kumacheva E.

J Am Chem Soc. 2014 Mar 12;136(10):3875-80. doi: 10.1021/ja411601a. Epub 2014 Mar 3.

PMID:
24555752
4.

Competing reactions of CO2 with cations and anions in azolide ionic liquids.

Gohndrone TR, Bum Lee T, DeSilva MA, Quiroz-Guzman M, Schneider WF, Brennecke JF.

ChemSusChem. 2014 Jul;7(7):1970-5. doi: 10.1002/cssc.201400009. Epub 2014 May 6.

PMID:
24801593
5.

A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design.

Liu L, Vankova N, Heine T.

Phys Chem Chem Phys. 2016 Feb 7;18(5):3567-74. doi: 10.1039/c5cp06925d. Epub 2016 Jan 11.

PMID:
26751729
6.

Binding of CO2 by a Mes2PCH2CH2B(C6F5)2 species: an involvement of the ground state species in a low-energy pathway.

Pu M, Privalov T.

Chemistry. 2013 Dec 2;19(49):16512-7. doi: 10.1002/chem.201303297. Epub 2013 Nov 4. No abstract available.

PMID:
24281798
7.

Interactions of CO2 with various functional molecules.

Lee HM, Youn IS, Saleh M, Lee JW, Kim KS.

Phys Chem Chem Phys. 2015 Apr 28;17(16):10925-33. doi: 10.1039/c5cp00673b.

PMID:
25820034
8.

Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW; Air & Waste Management Association.

J Air Waste Manag Assoc. 2003 Jun;53(6):645-715. Review.

PMID:
12828330
9.

Frustrated Lewis pairs beyond the main group: synthesis, reactivity, and small molecule activation with cationic zirconocene-phosphinoaryloxide complexes.

Chapman AM, Haddow MF, Wass DF.

J Am Chem Soc. 2011 Nov 16;133(45):18463-78. doi: 10.1021/ja207936p. Epub 2011 Oct 26.

PMID:
21958011
10.

Stability, Reactivity, Selectivity, Catalysis, and Predictions of 1,3,2,5-Diazadiborinine: Computational Insight into a Boron-Boron Frustrated Lewis Pair.

Liu L, Chan C, Zhu J, Cheng CH, Zhao Y.

J Org Chem. 2015 Sep 4;80(17):8790-5. doi: 10.1021/acs.joc.5b01726. Epub 2015 Aug 24.

PMID:
26247714
11.

Frustrated Lewis pairs: from concept to catalysis.

Stephan DW.

Acc Chem Res. 2015 Feb 17;48(2):306-16. doi: 10.1021/ar500375j. Epub 2014 Dec 23.

PMID:
25535796
12.

Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide.

Rochette É, Courtemanche MA, Pulis AP, Bi W, Fontaine FG.

Molecules. 2015 Jun 29;20(7):11902-14. doi: 10.3390/molecules200711902.

13.

Activation of CO2 by phosphinoamide hafnium complexes.

Sgro MJ, Stephan DW.

Chem Commun (Camb). 2013 Apr 4;49(26):2610-2. doi: 10.1039/c3cc38286a.

PMID:
23385828
14.

Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides.

Chatelet B, Joucla L, Dutasta JP, Martinez A, Szeto KC, Dufaud V.

J Am Chem Soc. 2013 Apr 10;135(14):5348-51. doi: 10.1021/ja402053d. Epub 2013 Mar 27.

PMID:
23528185
15.

Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion.

Wang J, Wei Yang JG, Yi G, Zhang Y.

Chem Commun (Camb). 2015 Nov 7;51(86):15708-11. doi: 10.1039/c5cc06295k.

PMID:
26365361
16.

Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y.

Ghuman KK, Wood TE, Hoch LB, Mims CA, Ozin GA, Singh CV.

Phys Chem Chem Phys. 2015 Jun 14;17(22):14623-35. doi: 10.1039/c5cp02613j.

PMID:
25971705
17.

Polyethyleneimine-functionalized polyamide imide (Torlon) hollow-fiber sorbents for post-combustion CO2 capture.

Li FS, Qiu W, Lively RP, Lee JS, Rownaghi AA, Koros WJ.

ChemSusChem. 2013 Jul;6(7):1216-23. doi: 10.1002/cssc.201300172. Epub 2013 May 24.

PMID:
23712965
18.

Tailoring metal-organic frameworks for CO2 capture: the amino effect.

Vitillo JG, Savonnet M, Ricchiardi G, Bordiga S.

ChemSusChem. 2011 Sep 19;4(9):1281-90. doi: 10.1002/cssc.201000458.

PMID:
21922680
19.

New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids.

Yang Q, Wang Z, Bao Z, Zhang Z, Yang Y, Ren Q, Xing H, Dai S.

ChemSusChem. 2016 Apr 21;9(8):806-12. doi: 10.1002/cssc.201501691. Epub 2016 Apr 8.

PMID:
27061812
20.

Reactivity of azole anions with CO₂ from the DFT perspective.

Tang H, Wu C.

ChemSusChem. 2013 Jun;6(6):1050-6. doi: 10.1002/cssc.201200986. Epub 2013 May 2.

PMID:
23640877

Supplemental Content

Support Center