Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Global change and mercury cycling: challenges for implementing a global mercury treaty.

Selin NE.

Environ Toxicol Chem. 2014 Jun;33(6):1202-10. doi: 10.1002/etc.2374. Epub 2014 Apr 22.

PMID:
24038450
2.

A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE.

Ambio. 2018 Mar;47(2):116-140. doi: 10.1007/s13280-017-1004-9. Review.

3.

Interpretation of the source-specific substantive control measures of the Minamata Convention on Mercury.

You M.

Environ Int. 2015 Feb;75:1-10. doi: 10.1016/j.envint.2014.10.023. Epub 2014 Nov 12.

PMID:
25461410
4.

Linking science and policy to support the implementation of the Minamata Convention on Mercury.

Selin H, Keane SE, Wang S, Selin NE, Davis K, Bally D.

Ambio. 2018 Mar;47(2):198-215. doi: 10.1007/s13280-017-1003-x.

5.

Historical Mercury releases from commercial products: global environmental implications.

Horowitz HM, Jacob DJ, Amos HM, Streets DG, Sunderland EM.

Environ Sci Technol. 2014 Sep 2;48(17):10242-50. doi: 10.1021/es501337j. Epub 2014 Aug 22.

PMID:
25127072
6.

A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories.

Simone FD, Gencarelli CN, Hedgecock IM, Pirrone N.

Environ Sci Technol. 2016 May 17;50(10):5154-62. doi: 10.1021/acs.est.6b00691. Epub 2016 May 3.

PMID:
27120197
7.

Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

Ci Z, Zhang X, Wang Z.

Environ Sci Technol. 2012 Jun 5;46(11):5636-42. doi: 10.1021/es300137y. Epub 2012 Apr 19. Review.

PMID:
22493995
8.

All-time releases of mercury to the atmosphere from human activities.

Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ.

Environ Sci Technol. 2011 Dec 15;45(24):10485-91. doi: 10.1021/es202765m. Epub 2011 Nov 17.

9.

Responses of deposition and bioaccumulation in the Great Lakes region to policy and other large-scale drivers of mercury emissions.

Perlinger JA, Urban NR, Giang A, Selin NE, Hendricks AN, Zhang H, Kumar A, Wu S, Gagnon VS, Gorman HS, Norman ES.

Environ Sci Process Impacts. 2018 Jan 24;20(1):195-209. doi: 10.1039/c7em00547d.

PMID:
29360116
10.

The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal.

Mackey TK, Contreras JT, Liang BA.

Sci Total Environ. 2014 Feb 15;472:125-9. doi: 10.1016/j.scitotenv.2013.10.115. Epub 2013 Nov 27.

PMID:
24291137
11.

Response of fish tissue mercury in a freshwater lake to local, regional, and global changes in mercury emissions.

Vijayaraghavan K, Levin L, Parker L, Yarwood G, Streets D.

Environ Toxicol Chem. 2014 Jun;33(6):1238-47. doi: 10.1002/etc.2584. Epub 2014 Apr 25.

PMID:
24771700
12.

Benefits of mercury controls for the United States.

Giang A, Selin NE.

Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):286-91. doi: 10.1073/pnas.1514395113. Epub 2015 Dec 28.

13.

Global Sources and Pathways of Mercury in the Context of Human Health.

Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ.

Int J Environ Res Public Health. 2017 Jan 22;14(1). pii: E105. doi: 10.3390/ijerph14010105. Review.

14.

Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps.

Evers DC, Keane SE, Basu N, Buck D.

Sci Total Environ. 2016 Nov 1;569-570:888-903. doi: 10.1016/j.scitotenv.2016.05.001. Epub 2016 Jul 15.

PMID:
27425440
15.

Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

Sun R, Sonke JE, Heimb├╝rger LE, Belkin HE, Liu G, Shome D, Cukrowska E, Liousse C, Pokrovsky OS, Streets DG.

Environ Sci Technol. 2014 Jul 1;48(13):7660-8. doi: 10.1021/es501208a. Epub 2014 Jun 13.

PMID:
24905585
16.

Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St Louis VL, Sunderland EM.

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):526-31. doi: 10.1073/pnas.1516312113. Epub 2016 Jan 4.

17.

Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

Giang A, Stokes LC, Streets DG, Corbitt ES, Selin NE.

Environ Sci Technol. 2015 May 5;49(9):5326-35. doi: 10.1021/acs.est.5b00074. Epub 2015 Apr 16.

PMID:
25851589
18.

Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling.

Dastoor A, Ryzhkov A, Durnford D, Lehnherr I, Steffen A, Morrison H.

Sci Total Environ. 2015 Mar 15;509-510:16-27. doi: 10.1016/j.scitotenv.2014.10.112. Epub 2015 Jan 17. Review.

19.

Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area.

Gratz LE, Keeler GJ, Marsik FJ, Barres JA, Dvonch JT.

Sci Total Environ. 2013 Mar 15;448:84-95. doi: 10.1016/j.scitotenv.2012.08.076. Epub 2012 Sep 23.

PMID:
23010282
20.

Atmospheric mercury footprints of nations.

Liang S, Wang Y, Cinnirella S, Pirrone N.

Environ Sci Technol. 2015 Mar 17;49(6):3566-74. doi: 10.1021/es503977y. Epub 2015 Feb 27.

Supplemental Content

Support Center