Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 235

1.

Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss.

Xie L, Huang X, Li BW, Zhi C, Tanaka T, Jiang P.

Phys Chem Chem Phys. 2013 Oct 28;15(40):17560-9. doi: 10.1039/c3cp52799a.

PMID:
24037057
2.

Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

Zhu M, Huang X, Yang K, Zhai X, Zhang J, He J, Jiang P.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19644-54. doi: 10.1021/am504428u. Epub 2014 Nov 12.

PMID:
25365240
3.

Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene).

Rahimabady M, Mirshekarloo MS, Yao K, Lu L.

Phys Chem Chem Phys. 2013 Oct 14;15(38):16242-8. doi: 10.1039/c3cp52267a. Epub 2013 Sep 2.

PMID:
23999532
4.

Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K.

ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8061-9. doi: 10.1021/acsami.5b00555. Epub 2015 Apr 13.

PMID:
25822911
5.

Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability.

Yang K, Huang X, Zhu M, Xie L, Tanaka T, Jiang P.

ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1812-22. doi: 10.1021/am4048267. Epub 2014 Jan 13.

PMID:
24397561
6.

Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High-k Nanowires.

Wang G, Huang X, Jiang P.

ACS Appl Mater Interfaces. 2015 Aug 19;7(32):18017-27. doi: 10.1021/acsami.5b06480. Epub 2015 Aug 6.

PMID:
26225887
7.

Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material.

Huang Y, Huang X, Schadler LS, He J, Jiang P.

ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25496-507. doi: 10.1021/acsami.6b06650. Epub 2016 Sep 16.

PMID:
27602603
8.
9.

Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness.

Wang G, Huang Y, Wang Y, Jiang P, Huang X.

Phys Chem Chem Phys. 2017 Aug 9;19(31):21058-21068. doi: 10.1039/c7cp04096b.

PMID:
28748238
10.

Effect of the Modifier Structure on the Performance of Barium Titanate/Poly(vinylidene fluoride) Nanocomposites for Energy Storage Applications.

Niu Y, Bai Y, Yu K, Wang Y, Xiang F, Wang H.

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24168-76. doi: 10.1021/acsami.5b07486. Epub 2015 Oct 21.

PMID:
26457611
11.

Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.

Huang X, Jiang P.

Adv Mater. 2015 Jan 21;27(3):546-54. doi: 10.1002/adma.201401310. Epub 2014 Sep 3.

PMID:
25186029
12.

High-Energy-Density Polymer Nanocomposites Composed of Newly Structured One-Dimensional BaTiO3@Al2O3 Nanofibers.

Pan Z, Yao L, Zhai J, Fu D, Shen B, Wang H.

ACS Appl Mater Interfaces. 2017 Feb 1;9(4):4024-4033. doi: 10.1021/acsami.6b13663. Epub 2017 Jan 18.

PMID:
28068471
13.

Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures.

Li Q, Liu F, Yang T, Gadinski MR, Zhang G, Chen LQ, Wang Q.

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9995-10000. doi: 10.1073/pnas.1603792113. Epub 2016 Aug 22.

14.

Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

Siddabattuni S, Schuman TP, Dogan F.

ACS Appl Mater Interfaces. 2013 Mar;5(6):1917-27. doi: 10.1021/am3030239. Epub 2013 Mar 14.

PMID:
23452250
15.

Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites.

Bi M, Hao Y, Zhang J, Lei M, Bi K.

Nanoscale. 2017 Nov 2;9(42):16386-16395. doi: 10.1039/c7nr05212j.

PMID:
29053167
16.

Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications.

Parizi SS, Mellinger A, Caruntu G.

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17506-17. doi: 10.1021/am502547h. Epub 2014 Oct 7.

PMID:
25255863
17.

Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites.

Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H.

Adv Mater. 2015 Nov;27(42):6658-63. doi: 10.1002/adma.201503186. Epub 2015 Sep 25.

PMID:
26403222
18.

Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

Yang K, Huang X, Xie L, Wu C, Jiang P, Tanaka T.

Macromol Rapid Commun. 2012 Nov 23;33(22):1921-6. doi: 10.1002/marc.201200361. Epub 2012 Aug 13.

PMID:
22887717
19.

Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.

Tang H, Sodano HA.

Nano Lett. 2013 Apr 10;13(4):1373-9. doi: 10.1021/nl3037273. Epub 2013 Mar 8.

PMID:
23464509
20.

Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers.

Shaohui L, Jiwei Z, Jinwen W, Shuangxi X, Wenqin Z.

ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1533-40. doi: 10.1021/am4042096. Epub 2014 Jan 16.

PMID:
24410987

Supplemental Content

Support Center