Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Moving the mandible to the retruded contact position for simulating the hinge movement in virtual three-dimensional orthognathic surgery by integrating the plaster models.

Dai J, Zhang J, Hu G, Xin P, Shen S, Shen SG.

J Craniofac Surg. 2013;24(5):e470-2. doi: 10.1097/SCS.0b013e31829030d2.

PMID:
24036817
2.

A novel method to determine the potential rotational axis of the mandible during virtual three-dimensional orthognathic surgery.

Dai J, Dong Y, Xin P, Hu G, Xiao C, Shen S, Shen SG.

J Craniofac Surg. 2013 Nov;24(6):2014-7. doi: 10.1097/SCS.0b013e3182a30597.

PMID:
24220394
3.

A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.

Swennen GR, Mollemans W, De Clercq C, Abeloos J, Lamoral P, Lippens F, Neyt N, Casselman J, Schutyser F.

J Craniofac Surg. 2009 Mar;20(2):297-307. doi: 10.1097/SCS.0b013e3181996803.

PMID:
19276829
4.

Accurate movement of jaw segment in virtual 3D orthognathic surgery.

Dai J, Tang M, Xin P, Hu G, Si J, Dong Y, Xiao C, Shen SG.

J Craniofac Surg. 2014;25(2):e140-3. doi: 10.1097/SCS.0000000000000414.

PMID:
24621754
5.

The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model.

Swennen GR, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Casselman J, Schutyser F.

J Craniofac Surg. 2007 May;18(3):533-9.

PMID:
17538314
6.

A new method to move mandible to intercuspal position in virtual three-dimensional orthognathic surgery by integrating primary occlusion model.

Dai J, Wang X, Hu G, Shen SG.

J Oral Maxillofac Surg. 2012 Sep;70(9):e484-9. doi: 10.1016/j.joms.2012.05.011. No abstract available.

PMID:
22907113
7.

A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

Swennen GR, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Casselman J, Schutyser F.

Int J Oral Maxillofac Surg. 2009 Jan;38(1):48-57. doi: 10.1016/j.ijom.2008.11.006.

PMID:
19118978
8.

Generation of virtual models for planning orthognathic surgery using a modified multimodal image fusion technique.

Uechi J, Tsuji Y, Konno M, Hayashi K, Shibata T, Nakayama E, Mizoguchi I.

Int J Oral Maxillofac Surg. 2015 Apr;44(4):462-9. doi: 10.1016/j.ijom.2014.11.007.

PMID:
25475849
9.

Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.

Polley JW, Figueroa AA.

J Oral Maxillofac Surg. 2013 May;71(5):911-20. doi: 10.1016/j.joms.2012.11.004.

PMID:
23312847
10.

Point-based superimposition of a digital dental model on to a three-dimensional computed tomographic skull: an accuracy study in vitro.

Lin X, Chen T, Liu J, Jiang T, Yu D, Shen SG.

Br J Oral Maxillofac Surg. 2015 Jan;53(1):28-33. doi: 10.1016/j.bjoms.2014.09.007.

PMID:
25300890
11.

[Three-dimensional design of surgery for mandibular retrusion].

Ke ZY, Yin XM, Jiao PF, Bi ZY, Dai JX, Huang WH.

Nan Fang Yi Ke Da Xue Xue Bao. 2010 Jun;30(6):1279-81. Chinese.

12.

Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.

Ghanai S, Marmulla R, Wiechnik J, Mühling J, Kotrikova B.

Int J Oral Maxillofac Surg. 2010 Jan;39(1):75-82. doi: 10.1016/j.ijom.2009.10.023.

PMID:
20005674
13.

The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

Swennen GR, Barth EL, Eulzer C, Schutyser F.

Int J Oral Maxillofac Surg. 2007 Feb;36(2):146-52.

PMID:
17208409
14.

An orthognathic simulation system integrating teeth, jaw and face data using 3D cephalometry.

Noguchi N, Tsuji M, Shigematsu M, Goto M.

Int J Oral Maxillofac Surg. 2007 Jul;36(7):640-5.

PMID:
17368000
15.

Development of workflow for recording virtual bite in the planning of orthognathic operations.

Nilsson J, Thor A, Kamer L.

Br J Oral Maxillofac Surg. 2015 Apr;53(4):384-6. doi: 10.1016/j.bjoms.2014.12.017. No abstract available.

PMID:
25631397
16.

Optical tracking-based model surgery for orthognathic surgical planning using a quantifying evaluation method.

Kuo TH, Wong TY, Wu TC, Fang JJ.

IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1193-9. doi: 10.1109/TITB.2012.2204894.

PMID:
22929461
17.

Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery.

Nkenke E, Zachow S, Benz M, Maier T, Veit K, Kramer M, Benz S, Häusler G, Neukam FW, Lell M.

Dentomaxillofac Radiol. 2004 Jul;33(4):226-32.

PMID:
15533975
18.

Timing of three-dimensional virtual treatment planning of orthognathic surgery: a prospective single-surgeon evaluation on 350 consecutive cases.

Swennen GR.

Oral Maxillofac Surg Clin North Am. 2014 Nov;26(4):475-85. doi: 10.1016/j.coms.2014.08.001.

PMID:
25220754
19.

An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.

Kim DS, Woo SY, Yang HJ, Huh KH, Lee SS, Heo MS, Choi SC, Hwang SJ, Yi WJ.

J Craniomaxillofac Surg. 2014 Dec;42(8):2010-7. doi: 10.1016/j.jcms.2014.09.007.

PMID:
25458350
20.

A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models.

Ayoub AF, Rehab M, O'Neil M, Khambay B, Ju X, Barbenel J, Naudi K.

Int J Oral Maxillofac Surg. 2014 Apr;43(4):454-9. doi: 10.1016/j.ijom.2013.08.016.

PMID:
24091003
Items per page

Supplemental Content

Support Center