Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Synthesis and antibacterial activity of new long-chain-alkyl bile acid-based amphiphiles.

Ye W, Li Y, Zhou Z, Wang X, Yao J, Liu J, Wang C.

Bioorg Chem. 2013 Dec;51:1-7. doi: 10.1016/j.bioorg.2013.08.003. Epub 2013 Aug 19.

PMID:
24035808
2.

Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities.

Hoque J, Akkapeddi P, Yarlagadda V, Uppu DS, Kumar P, Haldar J.

Langmuir. 2012 Aug 21;28(33):12225-34. doi: 10.1021/la302303d. Epub 2012 Aug 8.

PMID:
22838496
3.

Colloidal and antibacterial properties of novel triple-headed, double-tailed amphiphiles: exploring structure-activity relationships and synergistic mixtures.

Marafino JN, Gallagher TM, Barragan J, Volkers BL, LaDow JE, Bonifer K, Fitzgerald G, Floyd JL, McKenna K, Minahan NT, Walsh B, Seifert K, Caran KL.

Bioorg Med Chem. 2015 Jul 1;23(13):3566-73. doi: 10.1016/j.bmc.2015.04.020. Epub 2015 Apr 16.

PMID:
25936261
4.

Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity.

Mahmoodi NO, Parvizi J, Sharifzadeh B, Rassa M.

Arch Pharm (Weinheim). 2013 Dec;346(12):860-4. doi: 10.1002/ardp.201300187. Epub 2013 Oct 18.

PMID:
24136795
5.

Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones.

Ullah Mughal E, Ayaz M, Hussain Z, Hasan A, Sadiq A, Riaz M, Malik A, Hussain S, Choudhary MI.

Bioorg Med Chem. 2006 Jul 15;14(14):4704-11. Epub 2006 Apr 5.

PMID:
16603364
6.

Thermo-switchable antibacterial activity.

Mattheis C, Zhang Y, Agarwal S.

Macromol Biosci. 2012 Oct;12(10):1401-12. doi: 10.1002/mabi.201200207. Epub 2012 Aug 27.

PMID:
22926982
7.

Synthesis and antimicrobial evaluation of new benzofuran derivatives.

Jiang X, Liu W, Zhang W, Jiang F, Gao Z, Zhuang H, Fu L.

Eur J Med Chem. 2011 Aug;46(8):3526-30. doi: 10.1016/j.ejmech.2011.04.053. Epub 2011 Apr 28.

PMID:
21570749
8.

Bicephalic amphiphile architecture affects antibacterial activity.

LaDow JE, Warnock DC, Hamill KM, Simmons KL, Davis RW, Schwantes CR, Flaherty DC, Willcox JA, Wilson-Henjum K, Caran KL, Minbiole KP, Seifert K.

Eur J Med Chem. 2011 Sep;46(9):4219-26. doi: 10.1016/j.ejmech.2011.06.026. Epub 2011 Jun 25.

PMID:
21794958
9.

Synthesis and antimicrobial activity of N-analogous corollosporines.

Neumann H, Strübing D, Lalk M, Klaus S, Hübner S, Spannenberg A, Lindequist U, Beller M.

Org Biomol Chem. 2006 Apr 7;4(7):1365-75. Epub 2006 Feb 28.

PMID:
16557326
10.

Effect of guanidinylation on the properties of poly(2-aminoethylmethacrylate)-based antibacterial materials.

Mattheis C, Wang H, Meister C, Agarwal S.

Macromol Biosci. 2013 Feb;13(2):242-55. doi: 10.1002/mabi.201200217. Epub 2012 Dec 17.

PMID:
23255254
11.

Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers.

Palermo EF, Vemparala S, Kuroda K.

Biomacromolecules. 2012 May 14;13(5):1632-41. doi: 10.1021/bm300342u. Epub 2012 Apr 17.

PMID:
22475325
12.

Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.

Dutta S, Kar T, Mandal D, Das PK.

Langmuir. 2013 Jan 8;29(1):316-27. doi: 10.1021/la3038389. Epub 2012 Dec 21.

PMID:
23214716
13.

Improving the biological activity of the antimicrobial peptide anoplin by membrane anchoring through a lipophilic amino acid derivative.

Slootweg JC, van Schaik TB, Quarles van Ufford HL, Breukink E, Liskamp RM, Rijkers DT.

Bioorg Med Chem Lett. 2013 Jul 1;23(13):3749-52. doi: 10.1016/j.bmcl.2013.05.002. Epub 2013 May 9.

PMID:
23719232
14.

Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles.

Singh M, Singh A, Kundu S, Bansal S, Bajaj A.

Biochim Biophys Acta. 2013 Aug;1828(8):1926-37. doi: 10.1016/j.bbamem.2013.04.003. Epub 2013 Apr 13.

16.

Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N'-phenyl-thiourea.

Zhang HJ, Qin X, Liu K, Zhu DD, Wang XM, Zhu HL.

Bioorg Med Chem. 2011 Sep 15;19(18):5708-15. doi: 10.1016/j.bmc.2011.06.077. Epub 2011 Jul 1.

PMID:
21872479
17.

TMEDA-derived biscationic amphiphiles: An economical preparation of potent antibacterial agents.

Black JW, Jennings MC, Azarewicz J, Paniak TJ, Grenier MC, Wuest WM, Minbiole KP.

Bioorg Med Chem Lett. 2014 Jan 1;24(1):99-102. doi: 10.1016/j.bmcl.2013.11.070. Epub 2013 Dec 4.

PMID:
24345449
18.

Assessment of antibacterial properties of polyvinylamine (PVAm) with different charge densities and hydrophobic modifications.

Westman EH, Ek M, Enarsson LE, Wågberg L.

Biomacromolecules. 2009 Jun 8;10(6):1478-83. doi: 10.1021/bm900088r.

PMID:
19391584
19.

Potentiating 1-(2-hydroxypropyl)-2-styryl-5-nitroimidazole derivatives against antibacterial agents: design, synthesis and biology analysis.

Wang ZC, Duan YT, Qin YJ, Wang PF, Luo Y, Wen Q, Yang YA, Sun J, Hu Y, Sang YL, Zhu HL.

Eur J Med Chem. 2013 Jul;65:456-63. doi: 10.1016/j.ejmech.2013.05.004. Epub 2013 May 15.

PMID:
23770447
20.

Supplemental Content

Support Center