Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens.

Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, Li P, Tector AJ.

Xenotransplantation. 2013 Sep-Oct;20(5):277-91. doi: 10.1111/xen.12047.

2.

Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates.

Wang ZY, Burlak C, Estrada JL, Li P, Tector MF, Tector AJ.

Xenotransplantation. 2014 Jul-Aug;21(4):376-84. doi: 10.1111/xen.12106.

3.

Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes.

Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J.

Xenotransplantation. 2015 May-Jun;22(3):194-202. doi: 10.1111/xen.12161.

4.

Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation.

Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ.

Xenotransplantation. 2013 Jan-Feb;20(1):27-35. doi: 10.1111/xen.12019.

PMID:
23384142
5.

Detection of Hanganutziu-Deicher antigens in O-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Jeong HJ, Adhya M, Park HM, Kim YG, Kim BG.

Xenotransplantation. 2013 Nov-Dec;20(6):407-17. doi: 10.1111/xen.12045.

PMID:
23855430
6.

Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs.

Burlak C, Paris LL, Lutz AJ, Sidner RA, Estrada J, Li P, Tector M, Tector AJ.

Am J Transplant. 2014 Aug;14(8):1895-900. doi: 10.1111/ajt.12744.

7.

Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells.

Beaton BP, Kwon DN, Choi YJ, Kim JH, Samuel MS, Benne JA, Wells KD, Lee K, Kim JH, Prather RS.

Xenotransplantation. 2015 Sep-Oct;22(5):379-90. doi: 10.1111/xen.12194.

8.

Silencing Porcine CMAH and GGTA1 Genes Significantly Reduces Xenogeneic Consumption of Human Platelets by Porcine Livers.

Butler JR, Paris LL, Blankenship RL, Sidner RA, Martens GR, Ladowski JM, Li P, Estrada JL, Tector M, Tector AJ.

Transplantation. 2016 Mar;100(3):571-6. doi: 10.1097/TP.0000000000001071.

PMID:
26906939
9.

The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs.

Butler JR, Martens GR, Li P, Wang ZY, Estrada JL, Ladowski JM, Tector M, Tector AJ.

J Surg Res. 2016 Feb;200(2):698-706. doi: 10.1016/j.jss.2015.08.034.

PMID:
26375504
10.

The alpha1,3GalT knockout/alpha1,2FucT transgenic pig does not appear to have an advantage over the alpha1,3GalT knockout pig with respect to glycolipid reactivity with human serum antibodies.

Diswall M, Benktander J, Ångström J, Teneberg S, Breimer ME.

Xenotransplantation. 2014 Jan-Feb;21(1):57-71. doi: 10.1111/xen.12071.

PMID:
24219248
11.

Identification of human preformed antibody targets in GTKO pigs.

Burlak C, Wang ZY, Chihara RK, Lutz AJ, Wang Y, Estrada JL, Tector AJ.

Xenotransplantation. 2012 Mar-Apr;19(2):92-101. doi: 10.1111/j.1399-3089.2012.00695.x.

PMID:
22497511
12.

Fibronectin from alpha 1,3-galactosyltransferase knockout pigs is a xenoantigen.

Chihara RK, Lutz AJ, Paris LL, Wang ZY, Sidner RA, Heyrman AT, Downey SM, Burlak C, Tector AJ.

J Surg Res. 2013 Oct;184(2):1123-33. doi: 10.1016/j.jss.2013.04.012.

PMID:
23673165
13.

Immunogenicity of Renal Microvascular Endothelial Cells From Genetically Modified Pigs.

Wang ZY, Li P, Butler JR, Blankenship RL, Downey SM, Montgomery JB, Nagai S, Estrada JL, Tector MF, Tector AJ.

Transplantation. 2016 Mar;100(3):533-7. doi: 10.1097/TP.0000000000001070.

PMID:
26906938
14.

Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection.

Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ.

Xenotransplantation. 2015 Jan-Feb;22(1):20-31. doi: 10.1111/xen.12131.

PMID:
25178170
15.

A comparison of the main structures of N-glycans of porcine islets with those from humans.

Miyagawa S, Maeda A, Kawamura T, Ueno T, Usui N, Kondo S, Matsumoto S, Okitsu T, Goto M, Nagashima H.

Glycobiology. 2014 Feb;24(2):125-38. doi: 10.1093/glycob/cwt088.

PMID:
24100142
16.

Comparative N-linked glycan analysis of wild-type and α1,3-galactosyltransferase gene knock-out pig fibroblasts using mass spectrometry approaches.

Park HM, Kim YW, Kim KJ, Kim YJ, Yang YH, Jin JM, Kim YH, Kim BG, Shim H, Kim YG.

Mol Cells. 2015 Jan 31;38(1):65-74. doi: 10.14348/molcells.2015.2240.

18.

The sweets standing at the borderline between allo- and xenotransplantation.

Jang KS, Kim YG, Adhya M, Park HM, Kim BG.

Xenotransplantation. 2013 Jul-Aug;20(4):199-208. doi: 10.1111/xen.12030. Review.

PMID:
23551837
19.

Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response.

Butler JR, Wang ZY, Martens GR, Ladowski JM, Li P, Tector M, Tector AJ.

Transpl Immunol. 2016 Mar;35:47-51. doi: 10.1016/j.trim.2016.02.001.

PMID:
26873419
20.

Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.

Gao H, Zhao C, Xiang X, Li Y, Zhao Y, Li Z, Pan D, Dai Y, Hara H, Cooper DK, Cai Z, Mou L.

J Reprod Dev. 2017 Feb 16;63(1):17-26. doi: 10.1262/jrd.2016-079.

Items per page

Supplemental Content

Support Center