Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

Exclusive localization of carbonic anhydrase in bacteriocytes of the deep-sea clam Calyptogena okutanii with thioautotrophic symbiotic bacteria.

Hongo Y, Nakamura Y, Shimamura S, Takaki Y, Uematsu K, Toyofuku T, Hirayama H, Takai K, Nakazawa M, Maruyama T, Yoshida T.

J Exp Biol. 2013 Dec 1;216(Pt 23):4403-14. doi: 10.1242/jeb.092809. Epub 2013 Sep 12.

2.

Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

Hongo Y, Ikuta T, Takaki Y, Shimamura S, Shigenobu S, Maruyama T, Yoshida T.

Gene. 2016 Jul 10;585(2):228-40. doi: 10.1016/j.gene.2016.03.033. Epub 2016 Mar 23.

PMID:
27016297
3.

Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii.

Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T.

Curr Biol. 2007 May 15;17(10):881-6.

4.

Long-term Cultivation of the Deep-Sea Clam Calyptogena okutanii: Changes in the Abundance of Chemoautotrophic Symbiont, Elemental Sulfur, and Mucus.

Ohishi K, Yamamoto M, Tame A, Kusaka C, Nagai Y, Sugimura M, Inoue K, Uematsu K, Yoshida T, Ikuta T, Toyofuku T, Maruyama T.

Biol Bull. 2016 Jun;230(3):257-67.

PMID:
27365420
5.

Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime.

Wentrup C, Wendeberg A, Schimak M, Borowski C, Dubilier N.

Environ Microbiol. 2014 Dec;16(12):3699-713. doi: 10.1111/1462-2920.12597. Epub 2014 Dec 11.

PMID:
25142549
6.

Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills.

Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-M├ędioni A, Amann R, Dubilier N.

Appl Environ Microbiol. 2005 Apr;71(4):1694-700.

7.

Loss of genes for DNA recombination and repair in the reductive genome evolution of thioautotrophic symbionts of Calyptogena clams.

Kuwahara H, Takaki Y, Shimamura S, Yoshida T, Maeda T, Kunieda T, Maruyama T.

BMC Evol Biol. 2011 Oct 3;11:285. doi: 10.1186/1471-2148-11-285.

8.

Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis.

Fujiwara Y, Kawato M, Noda C, Kinoshita G, Yamanaka T, Fujita Y, Uematsu K, Miyazaki J.

PLoS One. 2010 Jul 27;5(7):e11808. doi: 10.1371/journal.pone.0011808.

9.

Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis.

Takishita K, Takaki Y, Chikaraishi Y, Ikuta T, Ozawa G, Yoshida T, Ohkouchi N, Fujikura K.

Genome Biol Evol. 2017 May 1;9(5):1148-1160. doi: 10.1093/gbe/evx082.

10.
11.

Site-related differences in gene expression and bacterial densities in the mussel Bathymodiolus azoricus from the Menez Gwen and Lucky Strike deep-sea hydrothermal vent sites.

Bettencourt R, Rodrigues M, Barros I, Cerqueira T, Freitas C, Costa V, Pinheiro M, Egas C, Santos RS.

Fish Shellfish Immunol. 2014 Aug;39(2):343-53. doi: 10.1016/j.fsi.2014.05.024. Epub 2014 Jun 2.

PMID:
24882018
12.
13.

Characterization of carbonic anhydrases from Riftia pachyptila, a symbiotic invertebrate from deep-sea hydrothermal vents.

De Cian MC, Bailly X, Morales J, Strub JM, Van Dorsselaer A, Lallier FH.

Proteins. 2003 May 15;51(3):327-39.

PMID:
12696045
14.

Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel.

Distel DL, Lee HK, Cavanaugh CM.

Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9598-602.

15.

Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii.

Harada M, Yoshida T, Kuwahara H, Shimamura S, Takaki Y, Kato C, Miwa T, Miyake H, Maruyama T.

Extremophiles. 2009 Nov;13(6):895-903. doi: 10.1007/s00792-009-0277-8.

PMID:
19730970
16.

A novel alveolate in bivalves with chemosynthetic bacteria inhabiting deep-sea methane seeps.

Noguchi F, Kawato M, Yoshida T, Fujiwara Y, Fujikura K, Takishita K.

J Eukaryot Microbiol. 2013 Mar-Apr;60(2):158-65. doi: 10.1111/jeu.12017. Epub 2013 Jan 14.

PMID:
23316697
17.

Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams.

Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD, Kato C, Maruyama T.

Extremophiles. 2008 May;12(3):365-74. doi: 10.1007/s00792-008-0141-2. Epub 2008 Feb 28.

PMID:
18305898
18.

Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila.

De Cian MC, Andersen AC, Bailly X, Lallier FH.

J Exp Biol. 2003 Jan;206(Pt 2):399-409.

19.

Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico.

Duperron S, Sibuet M, MacGregor BJ, Kuypers MM, Fisher CR, Dubilier N.

Environ Microbiol. 2007 Jun;9(6):1423-38.

PMID:
17504480
20.

Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria.

Martins E, Figueras A, Novoa B, Santos RS, Moreira R, Bettencourt R.

Fish Shellfish Immunol. 2014 Oct;40(2):485-99. doi: 10.1016/j.fsi.2014.07.018. Epub 2014 Aug 1.

PMID:
25089010

Supplemental Content

Support Center