Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Nullifying tumor efflux by prolonged endolysosome vesicles: development of low dose anticancer-carbon nanotube drug.

Lee YK, Choi J, Wang W, Lee S, Nam TH, Choi WS, Kim CJ, Lee JK, Kim SH, Kang SS, Khang D.

ACS Nano. 2013 Oct 22;7(10):8484-97. doi: 10.1021/nn4041206. Epub 2013 Sep 18.

PMID:
24028581
2.

Photoacoustic "nanobombs" fight against undesirable vesicular compartmentalization of anticancer drugs.

Chen A, Xu C, Li M, Zhang H, Wang D, Xia M, Meng G, Kang B, Chen H, Wei J.

Sci Rep. 2015 Oct 20;5:15527. doi: 10.1038/srep15527.

3.

Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma.

Chaudhuri P, Soni S, Sengupta S.

Nanotechnology. 2010 Jan 15;21(2):025102. doi: 10.1088/0957-4484/21/2/025102. Epub 2009 Dec 3.

PMID:
19955607
4.

Multifunctional branched gold-carbon nanotube hybrid for cell imaging and drug delivery.

Minati L, Antonini V, Dalla Serra M, Speranza G.

Langmuir. 2012 Nov 13;28(45):15900-6. doi: 10.1021/la303298u. Epub 2012 Oct 31.

PMID:
23083447
5.

Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization.

Yu JM, Li YJ, Qiu LY, Jin Y.

J Pharm Pharmacol. 2009 Jun;61(6):713-9. doi: 10.1211/jpp.61.06.0003.

PMID:
19505361
6.

Hyaluronate tethered, "smart" multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin.

Datir SR, Das M, Singh RP, Jain S.

Bioconjug Chem. 2012 Nov 21;23(11):2201-13. doi: 10.1021/bc300248t. Epub 2012 Oct 17.

PMID:
23039830
7.

Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

Patel KJ, Trédan O, Tannock IF.

Cancer Chemother Pharmacol. 2013 Jul;72(1):127-38. doi: 10.1007/s00280-013-2176-z. Epub 2013 May 17.

PMID:
23680920
8.
9.

A tumor cord model for doxorubicin delivery and dose optimization in solid tumors.

Eikenberry S.

Theor Biol Med Model. 2009 Aug 9;6:16. doi: 10.1186/1742-4682-6-16.

10.

Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects.

Garde SV, Forté AJ, Ge M, Lepekhin EA, Panchal CJ, Rabbani SA, Wu JJ.

Anticancer Drugs. 2007 Nov;18(10):1189-200.

PMID:
17893520
11.

Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules.

Selbo PK, Weyergang A, Høgset A, Norum OJ, Berstad MB, Vikdal M, Berg K.

J Control Release. 2010 Nov 20;148(1):2-12. doi: 10.1016/j.jconrel.2010.06.008. Epub 2010 Jun 18. Review.

PMID:
20600406
12.

Improved antitumor efficacy and reduced toxicity of liposomes containing bufadienolides.

Hu K, Zhu L, Liang H, Hu F, Feng J.

Arch Pharm Res. 2011 Sep;34(9):1487-94. doi: 10.1007/s12272-011-0910-9. Epub 2011 Oct 6.

PMID:
21975810
14.

Development, characterization and cancer targeting potential of surface engineered carbon nanotubes.

Mehra NK, Jain NK.

J Drug Target. 2013 Sep;21(8):745-58. doi: 10.3109/1061186X.2013.813028. Epub 2013 Jul 4.

PMID:
23822734
16.

Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors.

van Lummel M, van Blitterswijk WJ, Vink SR, Veldman RJ, van der Valk MA, Schipper D, Dicheva BM, Eggermont AM, ten Hagen TL, Verheij M, Koning GA.

FASEB J. 2011 Jan;25(1):280-9. doi: 10.1096/fj.10-163709. Epub 2010 Sep 27.

PMID:
20876209
17.

Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy.

Murakami T, Sawada H, Tamura G, Yudasaka M, Iijima S, Tsuchida K.

Nanomedicine (Lond). 2008 Aug;3(4):453-63. doi: 10.2217/17435889.3.4.453.

PMID:
18694307
18.

Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs.

Liu SQ, Wiradharma N, Gao SJ, Tong YW, Yang YY.

Biomaterials. 2007 Mar;28(7):1423-33. Epub 2006 Dec 1.

PMID:
17141308
19.

Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs.

Di Crescenzo A, Velluto D, Hubbell JA, Fontana A.

Nanoscale. 2011 Mar;3(3):925-8. doi: 10.1039/c0nr00444h. Epub 2010 Dec 23.

PMID:
21180768
20.

A novel valproic acid prodrug as an anticancer agent that enhances doxorubicin anticancer activity and protects normal cells against its toxicity in vitro and in vivo.

Tarasenko N, Cutts SM, Phillips DR, Berkovitch-Luria G, Bardugo-Nissim E, Weitman M, Nudelman A, Rephaeli A.

Biochem Pharmacol. 2014 Mar 15;88(2):158-68. doi: 10.1016/j.bcp.2014.01.023. Epub 2014 Jan 24.

PMID:
24463168

Supplemental Content

Support Center