Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 219


Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions.

Barnuud NN, Zerihun A, Mpelasoka F, Gibberd M, Bates B.

Int J Biometeorol. 2014 Aug;58(6):1279-93. doi: 10.1007/s00484-013-0724-1. Epub 2013 Sep 13.


Berry composition and climate: responses and empirical models.

Barnuud NN, Zerihun A, Gibberd M, Bates B.

Int J Biometeorol. 2014 Aug;58(6):1207-23.


Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay.

Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR.

BMC Genomics. 2009 May 8;10:212. doi: 10.1186/1471-2164-10-212.


Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

Cheng G, He YN, Yue TX, Wang J, Zhang ZW.

Molecules. 2014 Sep 2;19(9):13683-703. doi: 10.3390/molecules190913683.


Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway.

Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Plaschkes I, Batushansky A, Chalifa-Caspi V, Mattivi F, Delledonne M, Pezzotti M, Rachmilevitch S, Cramer GR, Fait A.

BMC Plant Biol. 2014 Jul 26;14:188. doi: 10.1186/s12870-014-0188-4.


Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.

Villegas D, Handford M, Alcalde JA, Perez-Donoso A.

Plant Physiol Biochem. 2016 Jul;104:125-33. doi: 10.1016/j.plaphy.2016.03.020. Epub 2016 Mar 15.


Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes.

Bindon KA, Kassara S, Cynkar WU, Robinson EM, Scrimgeour N, Smith PA.

J Agric Food Chem. 2014 May 21;62(20):4558-70. doi: 10.1021/jf5002777. Epub 2014 May 12.


Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate.

Antalick G, Šuklje K, Blackman JW, Meeks C, Deloire A, Schmidtke LM.

J Agric Food Chem. 2015 May 13;63(18):4664-72. doi: 10.1021/acs.jafc.5b00966. Epub 2015 May 4.


Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR.

BMC Genomics. 2007 Nov 22;8:429.


Influence of fruit maturity at harvest on the intensity of smoke taint in wine.

Ristic R, Boss PK, Wilkinson KL.

Molecules. 2015 May 18;20(5):8913-27. doi: 10.3390/molecules20058913.


Deconvoluting effects of vine and soil properties on grape berry composition.

Zerihun A, McClymont L, Lanyon D, Goodwin I, Gibberd M.

J Sci Food Agric. 2015 Jan;95(1):193-203. doi: 10.1002/jsfa.6705. Epub 2014 May 21.


Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W.

BMC Plant Biol. 2011 Jan 10;11:7. doi: 10.1186/1471-2229-11-7.


Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.

Alabi OJ, Casassa LF, Gutha LR, Larsen RC, Henick-Kling T, Harbertson JF, Naidu RA.

PLoS One. 2016 Feb 26;11(2):e0149666. doi: 10.1371/journal.pone.0149666. eCollection 2016.


Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

Bobeica N, Poni S, Hilbert G, Renaud C, Gomès E, Delrot S, Dai Z.

Front Plant Sci. 2015 May 29;6:382. doi: 10.3389/fpls.2015.00382. eCollection 2015.


Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit.

Cortell JM, Halbleib M, Gallagher AV, Righetti TL, Kennedy JA.

J Agric Food Chem. 2007 Aug 8;55(16):6575-84. Epub 2007 Jul 18.


Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

de Rosas I, Ponce MT, Malovini E, Deis L, Cavagnaro B, Cavagnaro P.

Plant Sci. 2017 May;258:137-145. doi: 10.1016/j.plantsci.2017.01.015. Epub 2017 Jan 31.


Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition.

Šuklje K, Zhang X, Antalick G, Clark AC, Deloire A, Schmidtke LM.

J Agric Food Chem. 2016 Feb 3;64(4):870-80. doi: 10.1021/acs.jafc.5b05158. Epub 2016 Jan 22.


Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries.

Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E.

Phytochemistry. 2014 Jul;103:38-49. doi: 10.1016/j.phytochem.2014.03.024. Epub 2014 Apr 12.


Flavor of cold-hardy grapes: impact of berry maturity and environmental conditions.

Pedneault K, Dorais M, Angers P.

J Agric Food Chem. 2013 Nov 6;61(44):10418-38. doi: 10.1021/jf402473u. Epub 2013 Oct 24.


Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes.

Agati G, D'Onofrio C, Ducci E, Cuzzola A, Remorini D, Tuccio L, Lazzini F, Mattii G.

J Agric Food Chem. 2013 Dec 18;61(50):12211-8. doi: 10.1021/jf405099n. Epub 2013 Dec 5.


Supplemental Content

Support Center