Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 417

1.

Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments.

Yang Z, Xin D, Liu C, Jiang H, Han X, Sun Y, Qi Z, Hu G, Chen Q.

Mol Genet Genomics. 2013 Dec;288(12):651-67. Erratum in: Mol Genet Genomics. 2013 Dec;288(12):669.

PMID:
24022198
2.

Quantative trait loci of seed traits for soybean in multiple environments.

Che JY, Ding JJ, Liu CY, Xin DW, Jiang HW, Hu GH, Chen QS.

Genet Mol Res. 2014 May 23;13(2):4000-12. doi: 10.4238/2014.May.23.11.

3.

Impact of epistasis and QTL × environmental interaction on the mass filling rate during seed development of soybean.

Jiang Z, Han Y, Teng W, Li Y, Zhao X, Zhang Z, Man W, Li W.

Genet Res (Camb). 2012 Apr;94(2):63-71. doi: 10.1017/S0016672312000286.

PMID:
22624566
4.

QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.

Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I.

Theor Appl Genet. 2009 Aug;119(3):417-27. doi: 10.1007/s00122-009-1049-7.

PMID:
19462148
5.

Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments.

Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W.

Theor Appl Genet. 2009 May;118(8):1455-63. doi: 10.1007/s00122-009-0994-5.

PMID:
19266178
6.

QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population.

Zhao JY, Becker HC, Ding HD, Zhang YF, Zhang DQ, Ecke W.

Yi Chuan Xue Bao. 2005 Sep;32(9):969-78.

PMID:
16201242
7.

Impact of epistasis and QTL x environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.).

Han Y, Teng W, Sun D, Du Y, Qiu L, Xu X, Li W.

Genet Res (Camb). 2008 Dec;90(6):481-91. doi: 10.1017/S0016672308009865.

PMID:
19123966
8.

Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

Wang X, Jiang GL, Green M, Scott RA, Song Q, Hyten DL, Cregan PB.

Mol Genet Genomics. 2014 Oct;289(5):935-49. doi: 10.1007/s00438-014-0865-x.

PMID:
24861102
9.

Genetic analysis of single-locus and epistatic QTLs for seed traits in an adapted × nuña RIL population of common bean (Phaseolus vulgaris L.).

Yuste-Lisbona FJ, González AM, Capel C, García-Alcázar M, Capel J, De Ron AM, Lozano R, Santalla M.

Theor Appl Genet. 2014 Apr;127(4):897-912. doi: 10.1007/s00122-014-2265-3.

PMID:
24441949
10.

QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.

Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I.

Theor Appl Genet. 2009 Aug;119(3):429-36. doi: 10.1007/s00122-009-1048-8.

PMID:
19462149
11.

Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

Eskandari M, Cober ER, Rajcan I.

Theor Appl Genet. 2013 Jun;126(6):1677-87. doi: 10.1007/s00122-013-2083-z.

PMID:
23536049
12.

Identification of QTL underlying vitamin E contents in soybean seed among multiple environments.

Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W.

Theor Appl Genet. 2010 May;120(7):1405-13. doi: 10.1007/s00122-010-1264-2.

13.

Identification of quantitative trait loci controlling linolenic acid concentration in PI483463 (Glycine soja).

Ha BK, Kim HJ, Velusamy V, Vuong TD, Nguyen HT, Shannon JG, Lee JD.

Theor Appl Genet. 2014 Jul;127(7):1501-12. doi: 10.1007/s00122-014-2314-y.

PMID:
24794978
14.

QTL analysis of soybean seed weight across multi-genetic backgrounds and environments.

Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W.

Theor Appl Genet. 2012 Aug;125(4):671-83. doi: 10.1007/s00122-012-1859-x.

PMID:
22481120
15.

Quantitative trait loci analysis for the developmental behavior of Soybean (Glycine max L. Merr.).

Sun D, Li W, Zhang Z, Chen Q, Ning H, Qiu L, Sun G.

Theor Appl Genet. 2006 Feb;112(4):665-73.

PMID:
16365761
16.

QTL Location and Epistatic Effect Analysis of 100-Seed Weight Using Wild Soybean (Glycine soja Sieb. & Zucc.) Chromosome Segment Substitution Lines.

Xin D, Qi Z, Jiang H, Hu Z, Zhu R, Hu J, Han H, Hu G, Liu C, Chen Q.

PLoS One. 2016 Mar 2;11(3):e0149380. doi: 10.1371/journal.pone.0149380.

17.

Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.).

Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ.

Theor Appl Genet. 2010 May;120(7):1367-80. doi: 10.1007/s00122-010-1261-5.

PMID:
20084493
18.

Analysis of quantitative trait loci for main plant traits in soybean.

Yao D, Liu ZZ, Zhang J, Liu SY, Qu J, Guan SY, Pan LD, Wang D, Liu JW, Wang PW.

Genet Mol Res. 2015 Jun 10;14(2):6101-9. doi: 10.4238/2015.June.8.8.

19.

Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean.

Xing G, Zhou B, Wang Y, Zhao T, Yu D, Chen S, Gai J.

Theor Appl Genet. 2012 Sep;125(5):859-75. doi: 10.1007/s00122-012-1878-7.

PMID:
22580968
20.

Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds.

Gutierrez-Gonzalez JJ, Vuong TD, Zhong R, Yu O, Lee JD, Shannon G, Ellersieck M, Nguyen HT, Sleper DA.

Theor Appl Genet. 2011 Dec;123(8):1375-85. doi: 10.1007/s00122-011-1673-x.

PMID:
21850478
Items per page

Supplemental Content

Support Center