Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots.

Citerne HL, Le Guilloux M, Sannier J, Nadot S, Damerval C.

PLoS One. 2013 Sep 3;8(9):e74803. doi: 10.1371/journal.pone.0074803. eCollection 2013.

2.

Duplications and expression of DIVARICATA-like genes in dipsacales.

Howarth DG, Donoghue MJ.

Mol Biol Evol. 2009 Jun;26(6):1245-58. doi: 10.1093/molbev/msp051. Epub 2009 Mar 16.

PMID:
19289599
3.

Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.

Damerval C, Le Guilloux M, Jager M, Charon C.

Plant Physiol. 2007 Feb;143(2):759-72. Epub 2006 Dec 22.

4.

Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots.

Howarth DG, Donoghue MJ.

Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9101-6. Epub 2006 Jun 5.

5.

A genome triplication associated with early diversification of the core eudicots.

Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK, Soltis DE, Depamphilis CW.

Genome Biol. 2012 Jan 26;13(1):R3. doi: 10.1186/gb-2012-13-1-r3.

6.

Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies.

Zahn LM, Ma X, Altman NS, Zhang Q, Wall PK, Tian D, Gibas CJ, Gharaibeh R, Leebens-Mack JH, Depamphilis CW, Ma H.

Genome Biol. 2010;11(10):R101. doi: 10.1186/gb-2010-11-10-r101. Epub 2010 Oct 15.

7.

Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification.

Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, Van de Peer Y, Geuten K.

Mol Biol Evol. 2012 Dec;29(12):3793-806. doi: 10.1093/molbev/mss183. Epub 2012 Jul 20.

PMID:
22821009
8.

Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution.

Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE, Zhao T, Meng A, Li X, Li J, Wang H.

Mol Phylogenet Evol. 2016 Mar;96:93-101. doi: 10.1016/j.ympev.2015.12.006. Epub 2015 Dec 24.

PMID:
26724406
9.

Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody?

Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y.

Mol Phylogenet Evol. 2004 Apr;31(1):16-30.

PMID:
15019605
10.

Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators.

Takata N, Saito S, Saito CT, Uemura M.

BMC Evol Biol. 2010 May 1;10:126. doi: 10.1186/1471-2148-10-126.

11.

High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots.

Mondragón-Palomino M, Trontin C.

Ann Bot. 2011 Jun;107(9):1533-44. doi: 10.1093/aob/mcr059. Epub 2011 Mar 28.

13.

Recruitment of CRABS CLAW to promote nectary development within the eudicot clade.

Lee JY, Baum SF, Oh SH, Jiang CZ, Chen JC, Bowman JL.

Development. 2005 Nov;132(22):5021-32. Epub 2005 Oct 19.

14.

Evolution of the SPATULA/ALCATRAZ gene lineage and expression analyses in the basal eudicot, Bocconia frutescens L. (Papaveraceae).

Zumajo-Cardona C, Ambrose BA, Pabón-Mora N.

Evodevo. 2017 Mar 15;8:5. doi: 10.1186/s13227-017-0068-8. eCollection 2017.

15.

Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns.

Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL.

Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19369-74. Epub 2007 Nov 28.

16.

Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.

Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ.

Plant J. 2005 Nov;44(3):409-19.

17.

Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.

Citerne HL, Reyes E, Le Guilloux M, Delannoy E, Simonnet F, Sauquet H, Weston PH, Nadot S, Damerval C.

Ann Bot. 2017 Feb;119(3):367-378. doi: 10.1093/aob/mcw219. Epub 2016 Dec 26.

PMID:
28025288
18.

Evolution and Expression Patterns of TCP Genes in Asparagales.

Madrigal Y, Alzate JF, Pabón-Mora N.

Front Plant Sci. 2017 Jan 17;8:9. doi: 10.3389/fpls.2017.00009. eCollection 2017.

19.

Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.

Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S.

Plant J. 2015 Feb;81(4):559-71. doi: 10.1111/tpj.12750.

20.

Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae).

Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P.

Mol Biol Evol. 2012 Apr;29(4):1155-66. doi: 10.1093/molbev/msr283. Epub 2011 Nov 18.

PMID:
22101417

Supplemental Content

Support Center